
SUTLER: Update Summarizer Based on Latent Topics
This paper deals with our past and recent research in text summarization. We went from single-document summarization through multi-document summarization to update summarization. We describe the development of our summarizer which is based on latent semantic analysis (LSA). The classical LSA-based summarization model was improved by Iterative Residual Rescaling. We propose the update summarization component which determines the redundancy and novelty of each topic discovered by LSA. Moreover, we have modified the sentence selection component in order to prevent inner summary redundancy. The results of our first participation in TAC/DUC evaluation seem to be promising.
Keywords: Multi-Document Summarization, Update Summarization, Summarization Evaluation, Text Analysis Conference
Year: 2009

Authors of this publication:

Josef Steinberger
E-mail: jstein@kiv.zcu.cz

Karel Ježek
Phone: +420 377632475
E-mail: jezek_ka@kiv.zcu.cz
WWW: https://cs.wikipedia.org/wiki/Karel_Je%C5%BEek_(informatik)
Related Projects:

Automatic Text Summarisation | |
Authors: | Josef Steinberger, Karel Ježek, Michal Campr, Jiří Hynek |
Desc.: | Automatic text summarisation using various text mining methods, mainly Latent Semantic Analysis (LSA). |