Time-aware PageRank for bibliographic networks

Time-aware PageRank for bibliographic networks

In the past, recursive algorithms, such as PageRank originally conceived for the Web, have been successfully used to rank nodes in the citation networks of papers, authors, or journals. They have proved to determine prestige and not popularity, unlike citation counts. However, bibliographic networks, in contrast to the Web, have some specific features that enable the assigning of different weights to citations, thus adding more information to the process of finding prominence. For example, a citation between two authors may be weighed according to whether and when those two authors collaborated with each other, which is information that can be found in the co-authorship network. In this study, we define a couple of PageRank modifications that weigh citations between authors differently based on the information from the co-authorship graph. In addition, we put emphasis on the time of publications and citations. We test our algorithms on the Web of Science data of computer science journal articles and determine the most prominent computer scientists in the 10-year period of 1996 ÔÇô 2005. Besides a correlation analysis, we also compare our rankings to the lists of ACM A. M. Turing Award and ACM SIGMOD E. F. Codd Innovations Award winners and find the new time-aware methods to outperform standard PageRank and its time-unaware weighted variants.
The available full text is a preprint of the article.

Keywords: PageRank, citations, collaboration, time, salient researchers, computer science.

Year: 2012

Journal ISSN: 1751-1577
Download: download Full text [1511 kB]
View record in Web of Science®

Authors of this publication:


Dalibor Fiala


Phone: +420 377 63 2429
E-mail: dalfia@kiv.zcu.cz
WWW: http://www.kiv.zcu.cz/~dalfia/

Dalibor is the research group coordinator and an associate professor at the Department of Computer Science and Engineering at the University of West Bohemia in Pilsen, Czech Republic. He is interested in data mining, web mining, information retrieval, informetrics, and information science.

Related Projects:


Project

Social Networks Analysis

Authors:  Karel Je┼żek, Dalibor Fiala, Michal Nykl
Desc.:Application of the PageRank algorithm and its modifications to the exploration of network structures, particularly citation and co-autorship networks.