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Abstract 
Web mining is a newly emerging research area concerned with analyzing the World 
Wide Web. It is concerned mainly with its content, structure and usage. As the Web 
is the largest storehouse of knowledge of our time it has become essential to learn 
how to exploit its potential. This report aims at presenting Web mining in the context 
of other scientific domains and it introduces its possible applications to the support of 
researchers. The areas discussed are numerous: data mining, topic detection, 
computational linguistics, ontologies, Web search engines, etc. Special attention is 
paid to Web page ranking methods. We also present our experiments with two 
algorithms for discovering repeated word sequences in texts. Throughout this report 
we underline deficiencies in the state-of-the-art knowledge which could serve as 
guidelines in our future research. Finally, we enumerate existing systems for 
research staff support and we sketch out a vision of the doctoral thesis. 
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I Introduction 

This report is an attempt at capturing the state of the art in the domain of Web mining and 
related techniques with a focus on extracting knowledge appropriate for researchers. We will 
present a brief overview of knowledge discovery in databases (KDD), address the problem of  
topic detection and particularly its linguistic aspects, pay some attention to link analysis, 
search engines and Web page ranking schemes, describe a couple of existing systems in our 
field of interest, and underline the need for a free tool for researchers. Finally, we will point 
out where there is some space for some research and we will sketch out fundamental concepts 
of the future Ph.D. thesis. 

I.1 Knowledge Discovery in Databases 

Knowledge discovery in databases (KDD) and data mining are sometimes confused with each 
other. Some authors, indeed, consider KDD and data mining as synonyms and use both terms 
arbitrarily. Others, however, regard KDD as a more general process, part of which is data 
mining. We prefer the latter concept because it complies better with the mining hierarchy in 
which we involve text mining and Web mining as well. Thus, starting from the most general 
mining the hierarchy looks like this: KDD -> data mining -> text mining. It is not evident 
where to put Web mining. Obviously Web is more than text. But is it a child of data mining or 
KDD? Whichever mining we mean, it is always a process of extracting hidden information, 
useful knowledge or interesting relations from some data. Obviously, the nature of this data 
determines the hierarchy level at which we “mine”. 
 
Let us now recall a few definitions of data mining: 
 
“The nontrivial extraction of implicit, previously unknown, and potentially useful information 
from given data.” [Piatetsky-Shapiro91] 
 
"The science of extracting useful information from large data sets or databases." [Hand01] 
 
“The extraction of interesting (non-trivial, implicit, previously unknown and potentially 
useful) information or patterns from data in large databases.” [Han00] 
 
And also some explanation of what it is all good for: 
 
We are drowning in information, but starving for knowledge! (John Naisbett) 
 
Let us remark that the last citation does not speak about data. But saying “We are drowning in 
data, but starving for information!” would make exactly the same sense. In either case, we 
have plenty of something and we would like to get little pieces of something else out of that. 
There is a similar relationship between data and information like between information and 
knowledge. The transition from data to information is made by processing data and, similarly, 
by processing information we move from information to knowledge. Thus, we may conclude 
that information is processed data and knowledge is processed information. 
 
As we see, there is really some resemblance to a real-world gold mining, for instance. Han 
[Han00] remarks in this context, that we should say information mining rather than data 
mining in order to conform to the “real-world” terminology. A gold miner mines gold (a 
precious metal) from some raw mould, which is not useful as such. And so we do – we mine 
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information (gold) from data (mould). To retain data and avoid misunderstanding some 
authors prefer saying mining from data. However, the term data mining is broadly accepted 
and we will use it as well. 

I.2 Data Mining 

Data mining, as part of KDD, which involves some pre- and post-processing in addition (see 
Figure I.1), is closely related to other areas of computer science such as databases, artificial 
intelligence, information retrieval, machine learning, computational linguistics (as we will try 
to show), knowledge acquisition and knowledge engineering, decision support, ontologies… 
One of its finest applications is the market basket analysis, more thoroughly described in 
[Han00], for instance. We will only give a short introduction to this problem. 
 

 
Figure I.1: Data mining as part of KDD process (from [1]) 

I.2.1 Market Basket Analysis 

Imagine a customer leaving a shopping mall with a shopping basket (nowadays, rather with a 
car, though) full of goods. We will consider this basket as a transaction in a transaction 
database. Each item of goods (sugar, milk, bread…) is a transaction item. And there is 
another customer in whose basket there are cigarettes, beer and bread, so its transaction is 
{cigarettes, beer, bread}. We may expect that the total number of customers of a shopping 
mall could be in thousands or even in tens of thousands a day. A transaction database with 
several tens of thousands of records would certainly be a matter of interest of a marketing 
analyst of this shopping mall. For instance, the analyst could be interested in the probability 
that a person, who has bought beer, buys cigarettes as well (in the same transaction). Or in the 
ratio of transactions containing both beer and cigarettes to all transactions.  
 
Here we come slowly to association rules. An association rule describes some relation (or 
association) between items in the transaction database. The rule “A customer, who has 
bought beer, buys cigarettes as well” could then be logged simply as {beer} -> {cigarettes}. 
There are two major indicators for each association rule – confidence and support. The first is 
its probability and the latter its relative count, expressed like 
 
 



State of the Art & Concepts of Doctoral Thesis  Introduction 

 7 

 
n

BAcount
BAs

)(
)(


  (1) 

 
)(

)(
)(

As

BAs
BAc


  (2) 

 

where s(A  B) is the support of the rule A  B (for instance, {beer}  {cigarettes}),      

c(A -> B) is the rule’s confidence, count(A  B) is the number of transactions containing A 
and B, and s(A) is the ratio of the number of transactions containing A to the number of all 
transactions n in the database. 
 
Before processing the transaction database the analyst usually determines some threshold 
values for both confidence and support so as to eliminate uninteresting rules. The other rules, 
whose confidence as well as support lie above these thresholds, and which are therefore 
supposed to be interesting, will be called strong association rules. 
 
Mining strong association rules from transaction databases is a fundamental feature of 
modern data mining. The basic mining algorithm is the a priori algorithm. This algorithm 
takes advantage of the a priori known fact that a frequent n-itemset cannot contain a non-
frequent n-1-itemset. An itemset is a set of transaction items such as {bread, milk}. We may 
think of it as a helper (fictitious) transaction. The itemset {bread, milk} is a 2-itemset because 
it has two items. An itemset is frequent when its relative count is greater than or equal to the 
threshold support. So the algorithm starts generating frequent 1-itemsets then it continues 
producing frequent 2-itemsets (by pruning candidate itemsets using the prior knowledge 
above) and so on. The algorithm stops when there are no new frequent itemsets to obtain. 
Finally, it derives corresponding association rules from those frequent itemsets that satisfy the 
confidence constraint ([Rajman98]).  
 

The association rules of type {beer}  {cigarettes}, with which we work in our example, are 
simple one-dimensional associations. All items there are goods. [Han00] gives examples of 
multi-dimensional and other more complicated association rules, which take account of a 
customer’s age, address, abstraction levels of a product (e.g. a printer, a USB printer, an HP 
printer), etc. He also enumerates many possible modifications of the basic a priori algorithm, 
which consist mainly in parallelization, usage of special data structures (e.g. FP-trees), 
frequent itemsets pruning  and other enhancements. 
 
The analyst can take many conclusions analyzing the strong association rules mined from the 
transaction database. Not all of them may be interesting in the end. But some of them might 
significantly improve the shopping mall’s performance when taken advantage of. For 
instance, if a strong association rule says that beer and cigarettes are always bought together,  
these goods could be placed in opposite corners of the store so that customers moving from 
one corner to the other could also buy other products. Or, on the contrary, they could be put 
next to each other to encourage customers to purchase them. For a decision maker, it is 
merely a matter of creativity, how he treats the information that has suddenly emerged from 
the data. 

I.3 Text Mining 

Text mining is a new specialized domain of data mining arising in the 1990s. The difference is 
that whereas data mining is concerned with (mostly structured) general type data, text mining 
uses similar tools to mine information from (mostly unstructured) text sources. These sources 
may be text corpora of random speech samples recorded in the street, documents in a 
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computer folder, e-mails, listings of computer directories, whatever documents downloaded 
from the Web, etc. It is interesting that once a document becomes structured (by transforming 
it from a plain text file into an XML document, for example), it moves to the realm of data 
mining. In fact, XML documents are logically or semantically structured, i.e. we can localize 
fragments in them knowing exactly what the contents of those fragments mean. On the other 
hand, finding a postal ZIP code in an e-mail would turn out more difficult. Besides, there exist 
semi-structured documents, such as the International Genealogical Index GEDCOM [39]. 
Briefly, the less structured documents we deal with the more appropriate is the usage of text 
mining techniques. 
 
The father of text mining is Ronen Feldman ([Feldman95], [Feldman96], [Feldman97a] 
[Feldman97b], who introduced association rules mining at the level of keyword co-
occurrences, among others. This mining at the term level ([Feldman98a], [Feldman98b]) has 
proven to bring even more useful and interesting relations and patterns. Terms in this sense 
have the same meaning as repeated segments about which we will talk later on. Ronen 
Feldman stands behind some commercial data and text mining applications in which he has 
employed the methods presented in his papers, such as ClearResearch discussed in Section V. 
Text mining is a new, challenging area of research whose possible applications ranging from 
topic detection, concepts discovery and collaboration networks analysis to detection of 
criminal activities are still not fully explored. 

I.4 Web Mining 

Web is a huge storehouse of potential knowledge. Shortly after its appearance evident 
problems arose of extracting from it the information we needed. The trouble is that it is vast 
(up to 5 x 10

10
 documents so far), volatile (it grows constantly, but at the same time, a 

significant number of documents disappear every day), heterogeneous (it preserves all kinds 
of documents – text, image, video, sound…), unstructured (apart from XML files and the like, 
Web documents are mostly highly unstructured) and the system of hyperlinks connecting one 
Web document with another one is a little labyrinth. It was soon discovered that not only the 
content of Web was important but also its topology. Although close to other “mining 
brothers”, the notion of Web graph of documents connected via links makes Web mining deal 
with discrete mathematics (combinatorics and graph theory). [Chakrabarti02] presented 
perhaps the most comprehensive state of the art of Web mining so far. 
 
We can observe that Web mining completes three main tasks: crawling, topology analysis and 
content analysis. ([Kosala00] adds usage analysis but neglects crawling.) Crawling is the art 
of traversing the Web graph efficiently and effectively. Chakrabarti proposes parallel methods 
that take account of server load balancing and enable avoiding Web traps, i.e. infinite cycles 
of documents linking to each other. Optimizing these crawling programs (crawlers, spiders, 
Web robots, bots or agents) is also an important factor in the design of Web search engines. 
These engines use crawlers to download Web documents for indexing. We will devote a 
special chapter to search engines (Section IV). Topology analysis consists in exploring 
relationships  among Web sites so as to find the most authoritative sources on the Internet, for 
example. This may further enhance search engines’ capabilities. Content analysis employs 
similar methods as data mining and machine learning, which we mention briefly in the next 
paragraph. 

I.5 Machine Learning 

The background idea behind all computerized activities is to automatize certain processes that 
would otherwise be done by humans with much more effort and in much more time. In order 
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to make machines “think” and do what we demand they must be trained first. In the case of 
supervised learning it is humans who teach them. For instance, the problem of classification 
(or categorization) of input objects can be solved by supplying the machine with a training set 
of pre-classified objects (where the objects were classified by humans), letting it learn 
classification rules and consequently getting it classify real samples. Let us remind that a class 
is a set of objects having the same or similar attributes (features). In unsupervised learning, 
such as clustering, it is the machines themselves that group samples into clusters in order to 
minimize intracluster and maximize intercluster distances. Letting alone the process of their 
creation, clusters and classes differ from each other only in that a cluster does not need to 
have a name (label) whereas each class is human labeled before. [Han00] and [Chakrabarti02] 
speak also about methods of semi-supervised learning that are a combination of both. 
 
Further below we will stress the need for adaptive, semi-supervised machine learning 
techniques by which we teach the machines what is desirable and what is not, let them do 
their job, make corrections in case they make mistakes and, iteratively, we get them improve 
their performance. These methods are by far not so well documented as those in the first 
paragraph of this section. 

I.6 Personalized Web Surveillance 

The struggle for exploiting the full potential of the Web will probably go on in the next 
decades. What is more likely to become the reality of present days is the concept of 
personalized Web. Personalized Web is a Web tailored for a particular user. In the optimal 
case, a user works with a small part of Web only. With a part that satisfies his needs for 
information. This window into the whole World Wide Web is based on the user’s profile 
taking account of his Web usage history (sites visited, pages bookmarked, time passed while 
looking at certain pages, etc.) and some additional information such as preferences set by 
user. Personalization allows for abstracting from the entire Web, reducing its size to much 
more manageable dimensions, thus facilitating the search for information and knowledge 
extraction. 
 
We must underline in this context that personalized Web should not be confused with 
semantic Web. Tim Berners-Lee considers semantic Web as a place where humans as well as 
machines can exchange information. Data are semantically tagged to indicate what they 
represent in such a way that machines can process these tags. However,  the tagging does not 
say how the machines should process it.  
 
Programs that systematically search the Web and process the information found in a manner 
more or less independent of the end users are called autonomous agents, intelligent agents or 
simply Web agents. We may give an example of an intelligent agent usage. Suppose a 
businessman would like to take part in a business meeting held in a month on another 
continent. He wishes to get to the meeting and back in time and he would also like to 
minimize travel costs. He sends his request and constraints to an autonomous agent and he 
waits for its response. After some time, the Web agent replies with a list of, hopefully, cheap 
flight connections and it will have made a booking perhaps. The businessman has no clue how 
the agent acquired the results presented, whether it just searched the Web and filled in some 
forms, or whether it interacted with humans or even negotiated with other intelligent agents. 
The area of autonomous Web agents has an enormous potential that is yet to be fully 
exploited. It is a new research field with many open issues. 
 
In this context, we might easily imagine a scientist wishing to have state-of-the-art knowledge 
in his or her field of interest. For this purpose, we could charge an intelligent agent with the 
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task of continuously watching over Web sites of other scientists and supplying our researcher 
with information on new research topics, publications, conferences, patents, newly emerged 
Web sites in a given domain, etc. This kind of Web surveillance is sometimes called scientific 
watch or technological watch. There are systems of scientific watch like Tétralogie but they do 
not work completely autonomously. See Section V.2 for more information on Tétralogie. 
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II Topic Detection 

Topic detection is very close to classification (categorization) in that it labels documents so 
that a reader could characterize them with a few words without having to read them. The 
difference is that unlike classification topic detection deals with a more or less continuous 
feed of information where the topic (or topics) evolves in time. A typical example would be a 
news television Web site updating its content every time when needed, typically a couple of 
times per hour. There even exists the RSS meta-language [2] which is particularly useful for 
steady news feeds. RSS (RDF Site Summary) is based on XML and it specifies the way an 
emitter announces updates of its content so that a receiver could react accordingly. In this 
manner, a favourite Web browser is always capable of offering its users the latest news 
headlines. Another difference from classification is that results of this process are much less 
specified. We might wish to obtain for each document a simple keyword describing its 
content, a set of keywords, a whole phrase, a paragraph, etc. On the other hand, the result of 
classification is always a document’s assignment to one or more classes (in case of multiclass 
classification).  

II.1 TDT project 

The huge number of documents available on the Web is impossible to categorize by hand. In 
addition, some Web sites change quickly (such as those of news media) and to keep track of 
what they are speaking about, we are obliged to make use of tools for automatized topic 
detection. The TDT project (topic detection and tracking) has made available several corpora 
for testing accuracy of topic detection algorithms [3]. For instance, the TDT-2 Corpus 
contains approximately 60 000 news stories acquired from six major American media sites in 
the first half year of 1998. A hundred topics are manually identified for the corpus which is 
divided into training, development and testing parts. Moreover, the TDT initiative sets five 
principal goals for a hypothetical perfect TDT system to achieve: 
 

 Story segmentation 

 New event detection 

 Topic detection 

 Topic tracking  

 Link detection 
 
Story segmentation addresses the problem of capturing the moments when a news channel 
starts or stops telling a story (with a given topic). This task applies only to the audio portion 
of TDT corpus because text news are segmented already. New event detection deals with 
discovering that a new event, never known before, has just emerged. Topic detection decides 
over a story’s topic (previously unknown), whereas topic tracking assigns each story to a 
specific topic (already known to the system). So it is very close to classification, indeed. 
Only, classification, under normal circumstances, is not limited by time and has the whole 
training corpus at its disposal. In topic tracking the decision must be made with only little 
time to look ahead (in the news feed time line). Likewise, topic detection is rather an 
incremental clustering for the same reasons. Finally, link detection is concerned with deciding 
whether two stories are linked, i.e. discussing the same event. Recently, hierarchical topic 
detection, which aims at creating a topics taxonomy, has seemed to replace topic detection. 
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II.1.1 State of the Art 

[Flynn04] discusses the topic detection subtask of the TDT project and presents a system for 
clustering news reports. Moreover, he summarizes some conclusions taken from previous 
research work in this field. We will briefly state them here supposing that the reader of this 
report is familiar with the document vector space model and corresponding formulas.  
 
Information retrieval (IR) systems often try to reduce document feature space excluding terms 
whose presence or absence in documents does not change their meaning. One example may 
be stop-words such as prepositions, articles, etc. Features are also selected according to their 
frequencies – local, global and document frequency. For example, many IR systems discard 
the terms that occur very rarely in very few documents. However, in the domain of news 
reports infrequent terms are often the most characteristic when talking about a particular 
event. Thus, Flynn et al. choose terms independently of their local frequency and for the 
global frequency, they throw away those terms that appear only once in the whole corpus. 
 
Each selected term must be assigned a weight, which is mostly a product of a local weight, 
global weight and a normalization factor. Local and global weights are directly related to 
their respective frequencies whereas the normalization factor prevents long documents from 
having greater weights than short documents. Flynn experimented with combinations of local 
and global weights and he concludes that ANTF local weighting and IDF global weighting 
work best together (ANTF stands for augmented normalized term frequency). They do not say 
which normalization factor they use but assuming the standard cosine normalization, the 
weighting formula might look like this: 
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where wij is the weight of term i in document j, fij is the number of occurrences of term i in 
document j (term frequency), xj is the greatest term frequency in document j, N is the number 
of documents in the corpus, ni is the number of documents that have term i in them (document 
frequency), and m is the number of distinct terms taken into account when measuring 
similarity between documents (size of the feature vector). (In addition to classical information 
retrieval literature, [Chisholm99] presents a very nice overview of well-known and some new 
weighting formulas.) 
 
The authors also discuss two main categories of clustering (partitioning and agglomeration) 
saying that partitioning approaches are generally faster but agglomerative techniques are more 
accurate. More specifically, they claim that hierarchical agglomerative clustering (HAC) with 
group average similarity appears to be the most effective in the TDT domain. 
 

II.1.2 TopCat 

TopCat (Topic Categories) by [Clifton04] is another interesting state-of-the-art project for 
identifying topics in news articles which makes use of the TDT corpus. Authors employ a 
hypergraph partitioning clustering mechanism on documents represented by sets of named 
entities – persons, organizations, and locations. Strictly said, they cluster  their frequent 
itemsets, i.e. groups of names often occurring together. To obtain named entities they take 
advantage of a system called Alembic [Day97]. The reader is reminded that careful feature 
selection usually has a very little effect on results, while a bad selection can have a disastrous 
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outcome. Thus, choosing named entities is not straightforward. However, results show that 
TopCat is effective. 
 
Alembic is a tool enabling quickly tagging large text corpora. Unfortunately, it is conceived for 
pre-tagging rather than tagging. So it supposes that a human expert will verify the tags in the 
end. Tags may be of a general nature, not just for labeling named entities as mentioned above. 
It works in a semi-automatic way, having an ergonomic user interface so as to minimize 
mouse clicks. It is able to derive a set of tagging rules on the basis of a training tagged corpus. 
For instance, it marks each proper noun after “Mr.”, “Mrs.”, “Dr.” with a person label. The 
tagging rate is at most hundreds of tags per minute. The system itself is a set of various 
programs in different languages (including Lisp) and it runs under UNIX only. It is evident 
that it may spare some human effort in extracting personal names from a text corpus but it is 
not usable for processing very large collections fast, effectively and automatically. The 
question is also how to compose a rule for identifying a proper noun. If the first rule in the 
chain is badly defined, so are all others. 

II.2 Linguistic Tools 

Detecting topics in texts written in a natural language has to do with computational 
linguistics. Computational linguistics deals with computerized treatment of human language 
in written as well as spoken form (strictly said, some representation of spoken form). One 
important term in this context, which we borrow from “normal” linguistics, is a concept. A 
concept means a domain (field, area of human knowledge), an idea, or a class in object-
oriented programming terminology. We may simply think of concepts as topics, thus finding 
concepts equals detecting topics. Concepts are often defined by typical phrases occurring in 
text. By phrases we mean sequences of words rather than syntactical sentences. Some authors 
like [Feldman98a] refer to phrases as terms, which is a little bit confusing with regard to 
information retrieval (IR) terminology where terms are lemmatized, i.e. words are stemmed to 
basic forms. We prefer the IR approach and we consider phrases consisting of terms. In 
general, finding phrases may be done in two ways: syntactically or statistically (simply 
looking for word co-occurrences). [Mitra97] showed that both methods had approximately the 
same effectiveness when employed for document indexing. For obvious reasons, computers 
use mostly statistic techniques. 

II.2.1 Repeated Sequences 

Repeated word sequences, sometimes referred to as repeated segments, phrases, co-
occurrences, or collocations, are simply sequences of words that occur more than once in a 
text or corpus. Whether all words in the text are taken into account or some of them are 
omitted (via stoplists) is implementation dependent. More generally, we may think of symbols 
instead of words. Then, repeated sequences of symbols are patterns representing the original 
data from which they were obtained. In this general sense, repeated segments extraction and 
application reach far beyond the scope of computational linguistics and text mining. They are 
an important means of clustering, classification, topic detection and other machine learning 
and artificial intelligence techniques. 
 
In the paragraphs below we will make the readers of this report familiar with three statistical 
approaches to repeated sequences extraction – a suffix tree based method, an inverted list 
based method, and a compression algorithm creating repeated sequences as a by-product. In 
[Tesar05] we presented our implementation and a comparison of both algorithms. 
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II.2.1.1 Suffix Tree 

A suffix tree (ST hereafter) is a data structure that allows many problems on strings to be 
solved easily and quickly. It can be used to solve a large number of string issues that occur in 
text editing, searching and other application areas. The suffix tree originates in the 1970s (see 
[Weiner73]), but only in the 1990s it was modified for ST-phrases (repeated sequences) 
retrieval (see [Zamir98]). Since this method is natural language independent, there is a 
possibility to manipulate with documents in many languages simultaneously (see 
[Grolmus03a]). Other advantages are the document processing order independency and the 
possibility to regulate the length of retrieved phrases that is straight dependent on the adjusted 
suffix tree level. There exist many implementations (see [Sandeep04], [Ukkonen95] or 
[Andersson95]) suitable for various purposes. We had been inspired by [Zamir98], 
[Sandeep04], [Ukkonen95] and [Andersson95] when we implemented the procedure of 
creating a ST-structure we present below. 
 
The general algorithm for the suffix tree structure construction convenient for discovering 
frequent phrases is similar to the algorithm depicted in [Zamir98]. In its simplest version, the 
suffix tree algorithm creates a tree structure that contains words in the order corresponding to 
their positions in the input documents. Each node of the suffix tree represents one word and 
the root represents the null word. Thus each path from the root represents a phrase containing 
the words labeling the nodes traversed. The suffix tree is a rooted and directed tree. For 
example, we want to create a suffix tree structure using the following sentences 
 

“can drive trucks safely. men drive cars safely. men can drive trucks” 
 
and we define the maximum tree height (thus the maximum phrases length) m = 3. The 
structure created in this way is shown in Figure II.1. When the suffix tree structure is created, 
the simplest way of obtaining single frequent phrases is to use a recursive procedure 
traversing the tree from the root node to leaf nodes. A non-recursive implementation is a 
relatively complex problem and there is no guarantee that we can achieve a better efficiency 
(while having the same complexity), because it depends on the current compiler 
implementation. The frequency of phrases is determined by the node that represents the last 
word in a particular phrase. From the set of nodes representing a particular phrase, this node is 
always situated at the bottom level of the suffix tree structure (when we consider the root as 
being at the top). 
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Figure II.1: Suffix tree structure example 
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A detailed description of the implemented ST-algorithm 
 
The implemented suffix tree algorithm pseudo code is presented in Figure II.3. Time 
complexities for each partial task are shown as well. At the beginning, an input corpus is 
tokenized and stored to split list in such a manner that particular words are stored 
consecutively and sentences (or their parts bordered by punctuation etc.) are delimited by 
space (see Figure II.2). To do this, we used regular expressions which allow defining words 
and sentences delimiters. The split list is then used for the suffix tree structure construction. 
First of all, a root node has to be created. The root node is special, because it does not 
represent any word. Then a word from the split list‘s first position is read and added to a hash 
table of unique words in order to accelerate access to stored words. 
 

Hash table containing
set of all words

men

.

..

cars

safely
trucks
drive
can

object Node

Hash table
childNodes

word

counter
 of occurences

 ...

Split list
can drive trucks safely men drive cars safely men can drive trucks ...

 
Figure II.2: Structure of a Node object 

 
create a root node of ST-structure;      O(1) 
while (input is not empty) 
{ 

clear parent list;        O(N) 
while (get next input word != sentence delimiter) 
{ 

add word to hash table;      O(N) 
add word node to root node;     O(N) 
add reference to parent list;      O(N) 

 
for each node from parent list (except the last one added) 
{ 

add word node to current node;    O(N*m) 
add reference to parent list;     O(N*m) 
remove currently processed node from parent list; O(N*m) 

} 
} 

} 
 
{ 

traverse created ST-structure recursively to obtain ST-phrases  O(N) 
} 

Figure II.3: Pseudo code of suffix tree algorithm 
 
Each of the suffix tree nodes represents just one input corpus word in form of a reference to 
the hash table, which is created in parallel. In this way we can considerably reduce the total 
memory requirements since single words at a suffix tree level deeper than one are repetitious. 
Nodes also contain information on how many times the phrase they represent occurs in the 
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input corpus and they provide a list of children childNodes (see Figure II.2). So if a word 
from the split list is read and added to the hash table, the root node has to be examined 
whether it contains a node that represents the current word because it is a parent node every 
time. If there is such a node, the counter of occurrences increases. Otherwise, a new node 
representing the current word is created and added to the list of children of the root node. In 
both cases, the node representing the current word is added to the end of the parent list. 
 
Now we process the parent list which contains nodes added in the previous step (see 
Figure II.3). Because these nodes  (except  the last added node - it is ready for the next step) 
are parents of the current word (that means they represent the word that occurs before the 
current word in the input corpus), we can simply do the same we did in the case of the root 
node. The parent nodes processed are removed from the parent list. Naturally, a node 
representing the current word cannot be added to the parent list if its level is equal to the 
maximum suffix tree level. After that, a next word is read and the procedure described above 
repeats until the end of the split list is reached. Figure II.4 depicts the first four suffix tree 
construction steps using the sentence “can drive trucks safely“ with the maximum level m set 
to three. 
 
Complexity 
 
As we can infer from Figure II.3, where N is the number of all words in the input corpus and 
m is the maximum suffix tree level, the time complexity is O(N + N*m + N). The space 
complexity of storing the tokenized text to memory is O(N), the hash table with unique words 
O(K), where K is number of unique words in the input corpus, all the suffix tree nodes 
O(N*m) in the worst case, and all the ST-phrases obtained O(N*m), in general. Thus, the total 
time and space complexities are both linear (see Figure II.8), which is conforming to 
[Zamir98]. 
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Figure II.4: Suffix tree construction example using parent list (m = 3) 

II.2.1.2 Repeated Segments 

Various authors used the term “repeated segments” in their papers among which we shall 
mention Justeson and Katz [Justeson95] and Lebart and Salem [Lebart94]. [Oueslati96] 
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employed repeated segments to acquire knowledge from a corpus. In those works, however, 
repeated segments had a more specific meaning and they were limited in definition by several 
constraints. They were thought of as term candidates for discovering new concepts and 
domains in text corpora. Thus, each term candidate had to contain a noun. Whether or not to 
include articles, prepositions, etc. in the term candidate was already application dependant. To 
determine the right morpho-syntactic patterns for generating an optimal number of term 
candidates is “an open research question” [Feldman98a]. See Table II.1 for an example of 
frequent repeated segments in English. 
 

N N                      candidate term  

N PREP N           toys for kids 

N N N                  vector space model 

ADJ N                  little house 

ADJ ADJ N          little red house  

ADJ N N little country house 

N PREP ADJ N   room for pregnant women 

Table II.1: Example of repeated segments 
 
Of course, to detect nouns and exclude verbs, for instance, we need some external resources 
such as different filters, etc. Another problem with repeated segments employed for concepts 
discovery is that they do not work for all languages. For instance, the German language, 
which creates new words by simply concatenating existing words, doesn’t enable finding 
repeated segments in the strict sense. The newly created word can occur no matter how many 
times in the corpus but, as it is a single word, it is never considered a concept. 
 
A tool that was developed on the basis of Oueslati’s work is called LIKES [4]. It is designed 
to allow for a number of linguistic tasks. To refine the discovery of term candidates (repeated 
segments) it makes use of a couple of filters such as a cutting filter with a list of words that 
cannot be part of a term candidate (mostly verbs and conjunctions), a grammatical filter with 
words that tend to introduce a segment (articles and pronouns) and so forth. These filters, of 
course, are language dependant and they must exist for each language in the corpus. LIKES 
itself is somewhat heavy weighted; it builds a tree of objects (paragraphs, sentences, words) 
for the whole corpus. However, it keeps track of segment contexts and relations. For instance, 
it is possible to find out where in the corpus (which text, paragraph and sentence) a particular 
segment is located. In the text below, repeated segments will mean pure repeated sequences 
without the limitations mentioned in the previous paragraph. 
 
Algorithm 
 
The algorithm pseudo code is presented in Figure II.5. Time complexities for each partial task 
are shown as well. Explanation will be given further. Our algorithm for discovering repeated 
segments does not have the necessity to take account of various filters because it considers 
each token in the corpus (here the tokens are words but they might be whatever symbols as 
well) as equal in terms of their morpho-syntactic meaning. Figure II.6 shows the most 
significant stages of the algorithm. We will follow the steps in the algorithm and give an 
example of its application. Consider the following input text (corpus): 
 
Personal construct psychology. Personal construct psychology. Personal construct theory. 
Personal construct technology. 
 
Pre-processing, i.e. tokenization, normalization, etc. of the input corpus is performed outside 
the algorithm, so the actual input is then an array of tokens (words). We create an inverted 
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index by adding each word to a hash table along with a list of its occurrences, i.e. with 
references to the corresponding places in the corpus where those words occur. Afterwards, 
with each word in the index we do the same operations. For instance, for the word personal, 
we look up its occurrences and create a list of words which follow this word at different 
places (see phase 1 in Figure II.5). The list will be sorted and only those words will remain 
that are part of sequences that occur two or more times. The other words are removed (see 
phase 2 in Figure II.5). Next, duplicate sequences are removed and  the unique ones are  
counted in phase 3. Left subsequences  of all sequences are added to the list in phase 4 and the 
same as in phase 3 is done in phase 5. Finally, the newly discovered segments are added to the 
list of repeated segments (phase 6). The whole process is repeated for another word in the 
inverted index. The sequence construct psychology, for example, will be found when 
processing the word construct. In theory, the maximum length of a repeated segment could be 
a half of that of the whole corpus. However, it is advisable to set it to a reasonable constant (in 
the example above the constant is three). Segments longer than this constant will be ignored. 
 
// reads tokenized text and updates inverted index 
foreach word in text 
add to hash table;   O(N) 
 
foreach key in hash table  O(K) 
{ 

// creates list of words following each occurrence of key word 
get following words;  O(V) 
// modifies list so as only those sequences remain that occur twice at least 
reduce words list;  O(V + VlogV) 
// counts newly discovered segments and adds them  
remove empty columns;  O(V) 
remove duplicates;  O(V) 
add inclusions;   O(V + VlogV) 
add segments;   O(V) 

} 

Figure II.5: Repeated segments – algorithm pseudo code 
 
Complexity 
 
Partial time complexities of individual operations are already noted in algorithm pseudo code 
in Figure II.5 where N is the number of words in the corpus, K is the number of unique words 
in the corpus (i.e. items in the hashtable) and V is the average number of occurrences of a 
word in the corpus. The evident time complexity of the whole algorithm in terms of these 
three variables is  

 ))log(( VVVKNO   (4) 

Obviously, V is N/K. Thus, substituting in (4) we get 

 ))/)/log()/((( KNKNKNKNO   (5) 

and further 

 ))/log(( KNNNNO  . (6) 

If K was N (i.e. each word in the corpus was different), the simplification to O(N) would be 
straightforward. But as K rather tends to be logN (see Figure II.7 and Zipf’s law [Zipf49]), the 
total time complexity is supralinear; that means 

 )log( NNO . (7) 

If we focus our attention on the space complexity, we observe that keeping the tokenized text 
in memory is O(N), the hash table with occurrences, i.e. the inverted index, is O(N) (the 
number of all occurrences can never be larger than N) and the list of segments is O(N). Thus, 
for the overall space complexity we get O(N). We can conclude saying that the algorithm for 
discovering repeated segments presented above is supralinear in time and linear in space. 
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Figure II.6: Important phases of repeated segments discovery 

II.2.1.3 Experiments 

We ran each algorithm on five different corpora whose size ranged from 1 MB to 30 MB 
approximately, in terms of the total number of words up to several million words. We were 
interested in sequences of maximum lengths of three, four and five and in time and memory 
consumed by each algorithm. Both algorithms discovered all word sequences occurring in 
every single corpus, thus the sequences found were identical in either case. See Figure II.7 for 
the characteristics of used corpora. Charts in Figure II.8 confirm the theoretical assumptions 
we made about the algorithms’ complexities. ST algorithm is linear in time as well as in 
space, whereas RS algorithm is supralinear in time and linear in space. However, the space 
consumption by ST algorithm is about twice as high as that by RS algorithm. (We 
implemented both algorithms in C#, compiled them on .NET Framework 1.1 and ran them on 
AMD Opteron 1.6 GHz with 2 GB RAM.) 
 
We showed two algorithms for finding repeated sequences of words and there are many good 
reasons why we should be interested in those repeated sequences (and not always of words). 
For instance, they may be useful for classification and clustering. We might apply a standard 
method [Han00] but as a  similarity  of two objects  we would  use the  ratio of  common  
repeated sequences. Also, repeated sequences are usable for topic detection in sets of text, 
topic evolution and other text mining tasks (e.g. [Feldman98a]). Obtaining repeated sequences 
as a by-product of a compression algorithm called SEQUITUR is described in the next 
section. Possible applications include spam filtering [5], Web users profiles generation 
[Grolmus03b], compression [Grabowski99], document indexing [Hammouda04], statistical 
linguistics [Stubbs04] and others. 
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Figure II.7: Characteristics of used corpora 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure II.8: Results achieved with both algorithms on sample corpora 

II.2.1.4 SEQUITUR 

SEQUITUR (see [Nevill-Manning97]) is a compression algorithm generating hierarchical 
grammars of the sequences being compressed. It can be stated concisely in the form of two 
constraints on a context-free grammar and it is linear with sequence length. The two 
constraints are: 
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 No pair of adjacent symbols appears more than once in the grammar (digram 
uniqueness) 

 Every rule is used more than once (rule utility) 
 

For example, both grammars in Table II.2 have satisfying properties: 
 

Sequence Grammar Remark 

abcdbc S  aAdA 

A  bc 

Rule A is used more than once. 
All digrams aA, Ad, dA and bc 
occur only once. 

abcdbcabcdbc S  AA 

A  aBdB 

B  bc 

Both rules A and B are used more  
than once. All diagrams AA, aB, 
Bd, dB and bc occur only once. 

Table II.2: Examples of grammars satisfying the constraints 
 
SEQUITUR’s operation consists of ensuring that both properties hold. The algorithm operates 
by enforcing the constraints on a grammar: when the diagram uniqueness constraint is 
violated, a new rule is formed, and when the rule utility constraint is violated, the useless rule 
is deleted. The fact that each rule (except the initial rule of the grammar) is repeated, allows 
us to consider each right-hand side as a repeated sequence of symbols. These symbols might 
be characters, words, notes, etc. according to SEQUITUR’s application. 

II.3 Taxonomies 

A taxonomy is a hierarchy of classes. We are primarily concerned with topic classes. A topic 
taxonomy is a convenient means of searching for some particular information when we know 
(more or less) on which category of human knowledge we should focus our attention. The 
reader is certainly familiar with directory services offered by most Web search engines, the 
most popular of which are Google [6] and Yahoo! [7]. A directory service allows for a 
comfortable browsing in a hierarchy of categories when searching for a particular subject, as 
opposed to simple key word search when we do not know or do not want to specify the field 
of interest. More about search engines will be said in Chapter IV. 
 
If we take a look at the taxonomy of Yahoo!, we see that there are twelve root topics. At 
Google there are fifteen of them. Ten topics are common - Arts, Business, Computers, Health, 
News, Recreation, Reference, Regional, Science, Society; five are unique to Google - Games, 
Home, Kids and Teens, Shopping, Sports; two are unique to Yahoo! - Education, 
Entertainment. (Both hierarchies may differ in regional versions.) We can see that the division 
at the root level is a little bit too fine with Google. Games, Shopping and Sports could be 
easily put together into an Entertainment category. Also, Home and Kids and Teens might be 
added to Recreation and Society, respectively. On the contrary, Yahoo’s Education is a 
subtopic of Society. 
 
But in general, both hierarchies are quite similar and they represent the current ontology of 
human knowledge. (We will discuss ontologies in Section II.1). More interestingly, they are 
both built manually, based on effort of many human editors. The Open Directory Project  
[40] behind Google Directories is open for public. In the next paragraphs we will try to 
answer the question why it is so difficult to create a topic taxonomy automatically. 



State of the Art & Concepts of Doctoral Thesis  Topic Detection 

 22 

II.3.1 Clustering 

Constructing a taxonomy resembles hierarchical clustering. Let us recall that there are two 
ways of clustering a set of objects in a hierarchical manner – a partitioning and an 
agglomerative approach. In a partitioning method we begin with the whole object set in one 
cluster and we gradually break it down into more clusters with less objects by putting outliers 
into separate clusters until we end up with each object being on its own in a special cluster. 
These one-object clusters are called singletons. In hierarchical agglomerative clustering 
(HAC), on the contrary, we start from singletons, in each step we agglomerate (link, 
concatenate) the two most similar clusters (similarity measures as well as linkage criteria may 
vary) until we have all objects in one cluster. The clustering process can be visualized in the 
form of a tree referred to as a dendrogram. See [Han00] for an overview of clustering 
techniques and corresponding references. Figure II.9 is an example of HAC. 

II.3.1.1 Incremental Clustering 

Thus, given a set of documents on different topics, we could apply a HAC method to obtain a 
topic hierarchy and then use one of the topic detection techniques mentioned earlier to label 
the topics somehow. This seems to be straightforward until we realize that the initial 
document set can change dynamically. Imagine a Web crawler which is in charge of 
monitoring steadily a collection of Web sites. It downloads documents and builds a taxonomy 
upon them. The problem is that the Web sites collection will probably not remain the same all 
the time. Some documents may disappear, some others may be added, etc. To keep the 
taxonomy up to date it is necessary to reflect those modifications. [Hammouda04] calls this 
dynamic clustering an incremental clustering and he underlines several challenges: 
 

 How to determine to which cluster the next object should be assigned? (a common 
issue for both incremental and non-incremental algorithms) 

 How to deal with the problem of insertion order? (in other words: if object A precedes 
object B in input, will (and should) the clusters (and hierarchy) look the same as if B 
preceded A?) 

 Once an object has been assigned to a cluster, should its assignment be frozen or is it 
allowed to be reassigned to other clusters later on? (i.e. should we prefer efficiency to 
accuracy?) 
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Figure II.9: Example of a hierarchical agglomerative clustering process and the corresponding 
dendrogram (values in matrices are intercluster similarities; single link criterion is used – the 
similarity between an existing cluster and a newly agglomerated cluster is chosen to be the 

highest similarity between the clusters in the new cluster and an existing cluster) 
 
[Hammouda04] enumerates four basic incremental clustering approaches and then proposes a 
new method called SHC – similarity histogram-based clustering. A cluster similarity 
histogram is a tuple of intervals and a count for each interval. A perfect cluster would have 
only one interval (or a point corresponding to the highest possible similarity) and the 
associated count would be the number of all pair-wise document similarities in this cluster. 
On the contrary, a poor cluster would have all similarities in the minimum interval.  The goal 
is to maximize the number of similarities in the high histogram levels of each cluster.  So the 
algorithm receives a new document, and it calculates the similarity histogram for each 
existing cluster before and after a fictitious addition of the new document. If the similarity 
distribution (histogram ratio) of a cluster is enhanced or only slowly degraded, the document 
is added to that cluster. Otherwise it is not added. If a document is not added to any of the 
existing clusters, it is put to a newly formed cluster. The time complexity of SHC is O(n

2
). 

however, the authors claim that it is sub-quadratic in typical situations. 
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SHC is augmented with reassignment strategy. It keeps track of  “bad” documents in clusters, 
i.e. documents that would increase their cluster’s histogram ratio if they were removed, and it 
periodically checks whether they could be reassigned to another cluster while enhancing the 
histogram ratios of both the original and the recipient cluster. Note that SHC is not 
hierarchical. Constructing a hierarchy incrementally is a much more complex problem 
because reassigning a document might lead to a complete destruction of the current hierarchy 
in the worst case. There are many algorithms for incremental hierarchical clustering such as in 
[Nassar04], however, it would be interesting to find out which perform best with dynamical 
updating of Web document taxonomies.  

II.3.2 Document Explorer 

[Feldman98a] and [Feldman98b] presents a system called Document Explorer. This software 
allows for so called text mining at the term level, which means mining knowledge from texts 
regarded as collections of terms rather than single words. These terms would correspond to 
our repeated segments defined above. Document Explorer consists of several modules – 
document retrieval, term extraction, taxonomy creation and knowledge discovery. We will 
focus on the taxonomy creation module. 
 
The user of Document Explorer is offered several tools for a semi-automatic construction of a 
terms taxonomy, mainly a taxonomy editor and a taxonomy refiner. An initial taxonomy is 
built automatically on the basis of meanings assigned to markup tags produced in the first 
phase (document retrieval). Then it is up to the user to refine the terms hierarchy. For 
instance, the user can drag and drop a part of the terms list as a new subtree in the taxonomy. 
He or she can define synonyms or group together similar terms by means of regular 
expressions. Also, the refiner analyzes the term frequent sets generated and it suggests to add 
them as siblings to the hierarchy. For example, if one the frequent sets is {bread, milk, sugar} 
and both “bread” and “milk” are present in the hierarchy under node “food”, it proposes 
“sugar” to be placed under “food” as well. 
 
Taxonomies enable users to specify mining tasks concisely and the authors remind that some 
text mining algorithms require term hierarchies: general association rules [Srikant95], 
maximal association rules and frequent maximal sets [Feldman97b]. 

II.4 Detecting Personal Web Pages 

As an intersection of topic detection and Web surveillance we might be interested in finding 
personal Web pages, for instance, personal pages of researchers in a certain domain. Taking 
account of typical document trees on Web servers of various institutions, personal Web pages 
mostly occur a couple of levels below the root page. Let us consider a University Web site. 
The root page is the University home page pointing possibly to other organizational entities 
such as faculties. Each faculty home page could link to departments, departments to staff 
home pages and the like. The tree resembles an organization chart. But how can a Web robot 
recognize whether or not a Web page is personal? 
 
[Shakes97] introduces a metasearch engine called Ahoy! meant to serve for finding personal 
homepages. Ahoy! makes use of Dynamic Reference Sifting (DRS) process in that it submits 
the name of the person to look for to several Web services, it filters their output and it 
suggests candidate home pages. It learns itself by extracting patterns from URLs of 
successfully found home pages and it uses this knowledge to generate URLs of home pages 
when a person’s name, its institution and country are known. Even though Ahoy! did not 
analyze full texts of pages, a search took nine seconds on average! Unfortunately, Ahoy! was 
removed from service in 2000 and has not yet been replaced. 
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II.4.1 TyPWeb 

TyPWeb [Beaudouin01] is an architecture that enables analyzing Web sites with regard to text, 
structure and links. Its authors employed it to study differences in content and structure 
between personal and commercial Web sites, among others. They investigated four corpora 
(two of them were personal Web sites, the other two were commercial) and they found out 
that it was possible to distinguish those two types of pages only on the basis of personal 
pronouns usage (i.e. frequency of occurrences). They defined six categories of personal 
pronouns: p1 = {I, my, myself}, p2 = {you, your, yourself}, p3 = {he, she, oneself}, p4 = 
{we, ourselves}, p5 = {you, yourselves}, p6 = {they, them, themselves}. (The original 
research was conducted in French – this is an approximate translation.) Table II.3 shows the 
resulting distribution of pronouns. 
 

 total corpus 
(705 sites) 

corpus 1 
(239 sites) 

corpus 2 
(430 sites) 

corpus 3 
(22 sites) 

corpus 4 
(14 sites) 

p1 24 26 23 13 14 

p2 5 5 5 2 3 

p3 34 35 34 25 33 

p4 10 10 10 11 11 

p5 21 18 20 44 34 

p6 6 6 6 5 5 

 100 100 100 100 100 

Table II.3: Distribution of pronouns (in %), from [Beaudouin01] 
 
A fast glimpse at the table reveals that corpora 1 and 2 are personal sites, whereas corpora 3 
and 4 are commercial sites. After neglecting sets p3 and p6 and recalculating the percentages 
the clear separation between personal and commercial Web sites is even more visible: corpus 
1 has 63 % of I/we against 37 % of you, corpus 2 has the same relation 58 % to 42 %, while 
corpus 3 contains 66 % of you against 34 % of I/we and in corpus 4 it is 61 % to 39 %. 
 
When we try to use a classical search engine such as Google to find a person’s personal home 
page we often succeed to get it as the first among the URLs returned. However, regarding the 
HTML source of the page we quickly find out what is the source of success – that person’s 
name is stated in the title or in the meta tags of the page. If a personal home page is not 
labeled this way it will very likely be put together with other (irrelevant) pages by the search 
engine. The reflections above encourage us to create a kind of meta search engine for 
personal Web pages which would submit queries to Web services (like Ahoy!) and filter out 
personal  home pages taking account of pronominal distributions (like TyPWeb). 

II.5 Ontologies 

An ontology in the philosophical sense of the word is a science about being. It asks questions 
such as “What is existence?” and it steadily looks for objects that “exist” or do not “exist”. In 
computer science, an ontology is a formal description of a (mostly hierarchical) structure of 
concepts in a particular domain and their relationships. The most obvious relationships are the 
“is a” and “has a” (sometimes also referred to as “part of”) relationships, well known form the 
object oriented programming terminology. A simplified version of an ontology is a taxonomy, 
which takes into account only the “is a” relationship and whose structure is a tree. (Compare 
with section II.3.) 
 
There are a number of formal languages for defining ontologies, in the Web domain mostly 
based on HTML, XML, or RDF, such as SHOE (Simple HTML Ontology Extensions), 
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DAML (DARPA Agent Markup Language), OIL (Ontology Inference Layer), etc. Usage of 
ontologies is particularly possible in knowledge representation, inductive reasoning, 
classification and so forth. There are computer systems centered on ontologies but their 
development is “not stable” [Richy02]. For instance, [Varlamis04] introduces a prototype 
application THESUS, which measures the similarity of Web pages by mapping extracted 
terms to ontology concepts. The same approach is employed to find out whether a user query 
matches a Web document. Useful links on ontologies may be found at Wikipedia [8]. 

II.5.1 KA2 

KA2 is a Web page created by the group Knowledge Annotation Initiative of the Knowledge 
Acquisition Community lead by R. Benjamins [Benjamins98]. It represents a manually built 
ontology with an easy availability [9] and transparency of ten categories of knowledge 
acquisition, e.g. machine learning, ontologies, specification languages, knowledge 
management, etc. For each topic there is a description, approaches used, researchers, research 
groups, conferences, journals, Web pages and the like. 

II.5.1.1 Experiments 

The analysis made in early 2004 of the first level of the tree whose root is KA2 has shown 
that this page is not maintained. There are 41 invalid URLs out of 110 stated. The corpus 
acquired by downloading valid documents (and removing HTML tags) has 1.5 MB. It 
contains 126 906 words, 9 914 forms and 3 341 hapaxes (words with just one occurrence). 
Table II.4 is a list of the most frequent repeated segments (case sensitive) with stop words 
removed.  
 

Rank Frequency Form 

1 209 Data Mining 
2 149 knowledge discovery 
3 146 data mining 
4 146 Knowledge Discovery 

5 113 Knowledge Management 
6 100 Knowledge Acquisition 

7 97 Artificial Intelligence 
8 90 Machine Learning 
9 89 Knowledge Engineering 

10 69 booktitle Proceedings 
11 65 International Conference 

12 62 Semantic Web 
13 54 knowledge acquisition 
14 54 knowledge representation 
15 53 association rules 
16 53 Information Systems 

17 50 Knowledge discovery 
18 49 Computer Science 

19 48 Data mining 
20 46 Association Rules 

Table II.4: KA2 – most frequent repeated segments 
 
Further, we applied the method of repeated segments to the data acquired by crawling the 
Web into the depth of five from the root of KA2. The crawl took 11 hrs 35 min and gathered 
over 45 000 documents in total. About 7 000 URLs were invalid and connection to almost 
1 600 URLs timed out (timeout was set to 3 seconds). The crawl was performed by means of 
a breadth-first tree traversal. The gathered data had to be divided into ten categories as stated 
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in Table II.5. For each category a corpus consisting of documents in various (but reasonable) 
formats was obtained but only HTML-like documents (HTML, XML, SHTML…) have been 
taken into account. The table further shows the size of the original corpus and the reduced 
(HTML-like) corpus. 
 

 Category All docs Size [MB] HTML docs Size [MB] 

1 Machine learning 4 053 200 3 912 28 

2 Reuse 2 719 223 2 234 8 

3 Problem-solving methods 12 438 1 209 10 658 159 

4 Ontologies 9 093 940 7 944 940 

5 Specification languages 4 193 119 4 032 80 

6 Validation & verification 69 0.7 69 0.7 

7 Knowledge management 3 535 108 3 468 85 

8 Knowledge acquisition methodologies 9 488 960 8 299 178 

9 Evaluation of knowledge acquisition     

10 Knowledge elicitation 4 0.05 4 0.05 

 Total 45 592 3 759 40 620 1 478 

Table II.5: Corpora obtained by crawling KA2 

II.5.1.2 Relations Among Topics 

The corpus for category 9 is empty the cause of which we did not examine because we further 
worked with four of those categories only. One possible reason for that could be invalid links 
in the ontology. A problem arose when crawling the individual topics. Should URLs already 
visited in a previous category be crawled again in the current one? If we answer no, the more 
domains we have crawled until now, the less URLs remain for the future topics as the 
categories are often in overlay. This is in accordance with the real life because research areas 
are not disjoint. Therefore, we do not use a global hash table of URLs but local ones for each 
category. 
 
The current implementation of the algorithm of repeated segments discovery (see Section 
II.2.1.2) in C# is very fast but limited by the main memory. A scalable algorithm suitable for 
very large corpora will have to be implemented in the future. For these reasons, the algorithm 
was applied to the topics 1, 2, 6 and 10 only. We must remark that the number and quality of 
repeated segments found depends a lot on the quality of language filters used. We adopted 
those in LIKES [4] for English and modified them a little bit. We observed that the more 
detailed the filters the less segments were discovered, which is the expected behaviour. If we 
added filters for other languages as well, the results would be a little different. Especially in 
topic 2 where a lot of French and Dutch texts appeared. Table II.6 summarizes what was 
obtained from our indexing engine – number of words, word forms, hapaxes, repeated 
segments (heads) and the process time for each topic (1 CPU Intel Pentium IV 2.7 GHz, 512 
MB RAM, Win XP). 
 

Topic Words Forms Hapaxes Segments Time 

1 3 746 606 94 267 42 740 170 959 2 min 44.5 sec 

2 1 010 067 40 705 15 794 58 802 36.5 sec 

6 93 918 3 253 1 064 2 401 2.8 sec 

10 6 402 1 510 780 190 0.5 sec 

Table II.6: Repeated segments of four topics 
 
To what extent are the examined topics distinct? How close are they to each other? Can we 
construct a hierarchy from them? To answer these questions we computed the intersection 
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ratio of each pair of topics. We always compared 1 000 most frequent segments of one 
category to all segments of another category. Of course, topic 10 (K10) has less than 
1 000 segments so all of its segments are considered. The results are shown in Table II.7. So, 
for instance, 17.2 % most frequent segments in K1 are contained in K2 as well whereas only 
11.3 % most frequent segments in K2 are also in K1. The interpretation would be that K2 is 
a more general (broader) topic than K1. 
 

Topic K1 K2 K6 K10 

K1 X 0.172 0.035 0.017 

K2 0.113 X 0.010 0.003 

K6 0.153 0.067 X 0.008 

K10 0.363 0.232 0.121 X 

Table II.7: Intersection ratios 
 
We may notice that the values in rows as well as in columns have a decreasing trend, which is 
implied by the number of segments in the categories K1 – K10 being smaller and smaller. 
This property prevents us from saying categorically that there is no hierarchy in those four 
topics. A research task might be to find a mapping of the matrix onto the hierarchy and vice 
versa. (Attempts to do so have failed so far.) The advantage over standard clustering methods 
which use distances between term vectors is in that no such large and sparse vectors need to 
be created. Despite the fact that the sets of repeated segments of the four topics are not of 
about the same size, we may conclude from Table II.7 that the topics are at the same level in 
the taxonomy of knowledge acquisition and that the ontology KA2 is correct. By the way, 
according to [Varlamis04] “there has been very little research on similarity measures between 
sets of elements”. This may also indicate a research direction. 
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III Web Links Analysis 

As we stated in Section I.4, one domain of Web mining is concerned with exploring the 
topology of Web sites. The term topology is borrowed from graph theory and it means the 
structure of Web graph, in which the nodes are Web pages and the arcs are links pointing 
from one page to another. Obviously, it is a directed graph. Soon it was discovered that this 
structure could bear some information no less important than the actual contents of Web 
pages. For instance, researchers have noticed that Web pages can generally be divided into 
two categories: pages that link to many other pages and pages that are pointed to by many 
other pages. In fact, this behaviour resembles human society when we think of Web pages as 
humans. 

III.1 Authorities and Hubs 

Gibson, Kleinberg and others ([Gibson98], [Chakrabarti98]) explored the existence of Web 
communities. In doing so they introduced the notions of authorities and hubs and they 
developed a technique called HITS (Hyperlink-Induced Topic Search), which is based on 
them. The authors conducted a number of experiments with HITS or methods derived from 
HITS  and they took a surprising conclusion that was in contrast to the common opinion that 
the World Wide Web was "becoming increasingly chaotic". A hub links to many pages, 
whereas an authority is linked to from many pages. Between these two entities there is a 
mutually reinforcing relationship – a good authority is linked to from many good hubs and a 
good hub links to many good authorities. A Web page can be a hub and authority at the same 
time. The following Figure III.1 shows an example of a Web community. The set S includes 
pages obtained with a query to a Web search engine, the extended set T contains all the pages 
linking to the pages in the set S and all the pages that are linked to from the pages in the set S. 
The size of the set S is limited by choosing only a certain number of results from the search 
engine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.1: Example of a Web community (from [Gibson98]) 
 

If we assign an authority weight a(p) and a hub weight h(p) to each page p, their values are 
computed as a sum of hub weights of the pages that link to it and as a sum of authority 
weights of the pages it links to, respectively. See equations (8) and (9). 
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At the beginning we initialize the values of all a(p) and h(p) to 1. We update them according 
to the formulae (8) and (9) in each iteration. We proceed like this with all the pages and we 
normalize the weights after each iteration. The authors prove that this iterative process 
converges to stable sets of weights of authorities and hubs. Then say ten greatest authorities 
and ten greatest hubs can be denoted as the core of a community. 

 
Previous thoughts can be expressed in the matrix notation. Let A = [aij] be the adjacency 
matrix of a directed Web graph (similar to that in Figure III.1), where aij = 1 when the page i 
links to page j and 0 otherwise. Let h and a be vectors corresponding to the weights of hubs 
and authorities of all pages. We will repeatedly perform the following operations: 

h ← A a  a ← A
T
 h 

From the classical matrix theory it implies that with an appropriate renormalization h 
(respectively a) converges to the principal eigenvector AA

T
 (respectively A

T
A). Kleinberg 

shows further that the non-principal eigenvectors of these matrices correspond to the 
authorities and hubs of the “non-principal” Web communities. 

III.2 Extended Authorities and Hubs 

We can also apply the idea of hubs and authorities to graphs with other kinds of nodes. In the 
previous case each node is a Web page but it could be a researcher, a research group or an 
institution as well. If a node is a researcher the arcs coming to this node are citations of this 
scientist (strictly said citations of his/her publications) made by other researchers (in their 
publications). On the other hand, the arcs pointing from this node to the others are citations of 
the other researchers. Of course, we might group researchers according to co-authorship, 
membership to institutions and so on. So the citations here are not meant to be references 
(links) from Web pages but directly from papers (publications). In the case of Web citations 
the cited entity can be easily recognized by its URL. It is more complicated with paper 
citations – it is necessary to find the references section in the paper, to retrieve the individual 
citations in it and possibly to determine the cited object. Here we must work with a certain 
ambiguity because not all citations have the same format, not all authors are stated with their 
second given names and so on. At the beginning we can let coexist the obtained values of 
Web and citation (paper) authorities. We can find out whether there is some correlation 
between them and a “universal authority” may be derived from them later, saying which 
author is frequently cited both on the Web and in publications. 
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IV Web Search Engines 

In February 1999, Lawrence and Giles estimated the number of publicly accessible Web 
servers to be 2.8 million and the number of Web pages about 800 million [Lawrence99a]. The 
method used was random sampling of IP addresses, then removing servers behind firewalls, 
requiring authorization or containing no content. Then 2 500 random servers were crawled 
trying to get all pages on them. The resulting number of pages derived from the average 
number of pages on the random servers and their estimate of all servers. They also found out 
that there was 6 TB (terabytes) of textual content on the Web and that 6 % of the pages were 
scientific or educational. According to their research none of the search engines covered more 
than 16 % of the Web. The total number of Web servers estimated by Netcraft [10] was 
62 million approx. in April 2005. 

IV.1 Web Scope 

With the information above we can make an estimate of the current Web size. Provided the 
relation between Web servers and pages is the same as in [Lawrence99a] there would be 
about 17.7 billion Web pages at present (800 / 2.8 ≈ 17 700 / 62). If we assume that Google’s 
8 billion Web pages (see Section IV.2.1) cover 16 % of the Web, there would be 50 billion 
documents on the Web. Thus, we can guess that there are 18 – 50 billion Web documents 
(18 x 10

9
 – 50 x 10

9
). Again, retaining the relations from [Lawrence99a] that would mean  

135 – 375 TB of textual information. The numbers corresponding to scientific and educational 
pages are then 1 080 - 3 000 million Web pages and 8 – 23 TB of textual content. To find 
some information in such an enormous amount of documents it is evident that the need for a 
Web search engine is vital.  

IV.2 Searching the Web 

Useful references regarding Web search are [11], [12], [13] and [Fiala03]. The Web growth is 
exponential and bibliographic control does not exist. To find a particular piece of information 
the use of a search engine is a necessity. The term search engine is rather universal; a finer 
division may be used: 
 
 search engines 
 directory services 
 metasearch engines 
 search providers 
 
In this grouping search engines such as Google, AltaVista, Excite, HotBot, Lycos do keyword 
searches against a database, directory services (Yahoo!, LookSmart, Britannica, The Open 
Directory) sometimes also called subject guides offer information sorted in subject 
directories, metasearch engines (also metacrawlers) such as Dogpile, Mamma, Metacrawler 
or SawySearch send search requests to several search engines and search providers provide 
the underlying database and search engine for external partners. Examples of search providers 
might be Inktomi and Fast Search. 
 
Directory services are fine for browsing general topics but for finding specific information 
search engines are more useful. Various factors influence the results from each. In particular, 
the size of their database, frequency of its update, search capability and design (algorithms) 
resulting in different speed have to be taken into account. The best use of metasearch engines 
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is submitting queries on obscure items to find out if something can be found on the Web at 
all. One of the current Inktomi partners is MSN Web Search. 

IV.2.1 Google 

Due to Google’s superiority to other search engines in almost all features we are going to take 
a closer look at it as a representative of this category. It launched officially on September 21, 
1999 with Alpha and Beta test versions released earlier. Since then it has pushed through with 
its relevance linking based on pages link analysis (the patented PageRank method), cached 
(archived) pages and a rapid growth. In June 2000 it announced a database of over 560 
million pages and they moved up their claim up to 3 billion by November 2002. As of April 
12, 2005 the number is 8 058 044 651 Web pages [14]. 
 
Googlebot is Google's Web-crawling robot written in C++ programming language. It collects 
documents from the Web to build a searchable index for the Google search engine. It follows 
HREF and SRC links on the Web pages. It is registered with the Web robots database [16] 
and it obeys the Robot Exclusion Standard [17] so it is possible to prevent it from visiting a 
site or a particular URL. 

IV.2.1.1 Databases 

The main Google database consists of four parts: 
 
 indexed Web pages 
 daily reindexed Web pages 
 unindexed URLs 
 other file types 
 
Indexed Web pages are Web pages whose words have been indexed, i.e. some records have 
been made about what terms and how many times they occur on a specific page. Typically, 
the terms are sorted descending as in an inverted index. Daily reindexed Web pages are the 
same, except that Google reindexes them “every day”. These pages display the date they were 
last refreshed after the URL and size in Google's results. Unindexed URLs represent URLs for 
Web pages or documents that Google's spider (Googlebot) has not actually visited and has not 
indexed. Other file types are Web-accessible documents that are not HTML-like Web pages, 
such as Adobe Acrobat PDF (.pdf), PostScript (.ps), Microsoft Word (.doc), Excel (.xls), 
PowerPoint (.ppt), Rich Text Format (.rtf) and others. 

IV.2.1.2 Comparison With Other Search Engines 

Various studies [17], [18] have shown that Google outperforms other search engines in terms 
of the size of its databases, frequency of Web crawls (i.e. "freshness" of documents in the 
repository), rapidity of responses to user queries, richness of its databases (as to the number of 
various document formats), and so on. Exact numbers may be found in [Fiala03]. We do not 
present them here because they usually change very quickly. But we do present a summary of 
Google's properties in Tables IV.1 and IV.2. Google has recently introduced many services 
related to Web searching such as Google Scholar (for finding bibliographic citations), Google 
Local (for finding goods and services near users' whereabouts), Froogle (for finding the 
cheapest products on the Web), and particularly Google Desktop, which brings the power of 
Google's indexing capabilities to users' personal computers. All in all, nothing seems to 
threaten its position in the near future. 
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Strength Description 

size 
 

It has the largest database including many file types. 

relevance 
 

Pages linked from others with a greater weight given to authoritative 
sites are ranked higher (PageRank analysis). 

cached archive 
 

It is the only search engine providing access to pages at the time they 
were indexed. 

freshness 
 

The average time of page reindexing is one month. 

special query 
terms 

It offers a number of special query terms enabling very specific 
searches. 

Table IV.1: Google’s strengths 
 

Weakness Description 

limited 
Boolean 
search 

The full Boolean searching with the ability to nest operators is not 
supported. 

case 
insensitivity 

No case-sensitive search is possible. 

no truncation 
 

There is no automatic plural or singular searching or search for words with 
the same word root. There is only one way of using wildcards such as “*” in 
the phrase "pay attention * fire" where it matches any word in that position. 
(Very useful in finding the correct English prepositions.) 

no similarity 
 

Google searches for exact, not for similar words. 

size limited 
indexing 

Of course, it indexes only some parts (e.g. some first 100 kB) of very large 
documents. 

Table IV.2: Google’s weaknesses 

IV.2.2 Specialized Search Engines 

There are many specialized search engines that could be particularly used in the support of 
researchers. We will name only a few of them: OJOSE [19], Scirus [20] or Phibot [21]. 
OJOSE is a metasearch engine, which submits queries to scientific databases, online journals 
or other search engines. Scirus and Phibot index research Web sites and electronic journals. 
Phibot offers improved relevance algorithms and indexes some of the Web sites in 15-minute 
intervals! ISI Web of Science [22] - ISI stands for Institute for Scientific Information - 
enables users to search a database consisting primarily of papers from about 8 500 research 
journals. In addition to journals, specific Web sites are also included in the database. See [23] 
and [24] for information on how the journals and Web sites are selected. There are weekly 
updates, with items usually appearing 3 to 8 weeks after publication [25]. ISI Web of Science 
is a commercial product. On the contrary, ResearchIndex (formerly CiteSeer) [26] is free and 
we will discuss it in Section V.2. 

IV.3 Architecture of Google 

Information in this Section is taken primarily from [Brin98]. In 1998, Google was an 
academic research project, therefore its internals were communicated to the public. Since 
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then, Google has gone a long way from there: it is a commercial product and the know-how 
is, naturally, not transmitted further by its authors. However, we may assume that the core of 
its implementation has remained the same. 

IV.3.1 Google Features 

Google seems to obey the motto "high precision is important even at the expense of recall". It 
uses a Web page ranking method called PageRank to present the most relevant results upon a 
user query. PageRank is based on the link structure of the Web. It is a more complex version 
of citation ranking of scientific literature and it is discussed in more detail in Section IV.4. 
Apart from PageRank, Google has several other innovative features: 
 

 anchor text (unlike other search engines, it associates the text within links with the 
pages they point to) 

 proximity search (in multi-word searches pages with the words occurring close to each 
other are ranked higher) 

 word presentation (it takes into account details such as font, HTML element in which 
the word occurs, etc.) 

 pages repository (full HTML sources of Web pages are available in a repository) 

 
Figure IV.1: Google architecture (from [Brin98]) 
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IV.3.2 Google Anatomy 

The high level Google architecture is depicted in Figure IV.1. Several crawlers download 
Web pages in parallel. What pages to download is told them by the URL server. The store 
server receives the downloaded Web documents, it compresses them and it places them to the 
repository. The actual indexing of documents is done by the indexer and the sorter. The 
indexer uncompresses documents in the repository and parses them. Each document is 
converted into a set of word occurrences and other information on these words called hits. 

Hits are put to the barrels so as to create a forward index (document  terms) sorted by 
docID. A docID is a unique identifier associated with each document generated whenever a 
new document URL is found on a Web page. (We use the terms page and document 
arbitrarily.) When parsing the documents, the indexer adds information on all links to the 
anchors file. (The word anchor refers to the <A> tag in HTML including its HREF attribute 
pointing to another place. Evidently, the <IMG> tag with the SRC attribute is also a source of 
links.) Later on, it is possible to find out from the anchors file where each link points from 
and to, and also the link text (i.e. the text between the <A> and </A> tags). 
 
The URL Resolver takes the links in the anchors file and transforms relative URLs to absolute 
URLs. For instance, it takes the link image1.gif and it reads that the page linking to it has the 
URL http://www.ulp.fr/index.html, so it composes the absolute URL of the image as 
http://www.ulp.fr/image1.gif. This absolute URL is then associated with its docID (in 
docIndex). Anchor texts are put to the index in barrels as if they occurred on the page they 
point to. The URL Resolver generates a links database as well, in which there are pairs of 
docIDs. This database will be used to compute PageRank values for all pages. The sorter 

sorts the barrels by words (by wordID) thus creating an inverted index (term  documents). 
The barrels have been sorted by docID up to now. Several sorters run in parallel. A list of 
wordIDs and offsets into the inverted index along with a lexicon produced by the indexer is 
employed to build a new lexicon utilized by the searcher. The searcher is run by a Web 
server [14]. It makes use of the lexicon, along with the inverted index and PageRanks to 
answer user queries (see Figure IV.2). 
 
1. Parse the query. 
2. Convert query words into wordIDs. 
3. Seek to the start of the doclist in the short barrel for every word in the query. 
4. Scan through the doclists until there is a document matching all the search terms. 
5. Compute the rank of that document for the query. 
6. If we are in the short barrels and at the end of any doclist, seek to the start of the doclist in 

the full barrel for every query word and go to step 4. 
7. If we are not at the end of any doclist go to step 4. 
8. Sort the documents that have matched by rank and return the top k. 
 

Figure IV.2: Google query evaluation 
 
A few remarks to Figure IV.2: A doclist is a list of docIDs with hit lists. It represents all 
occurrences of a particular word in all documents. Note that there are two sets of inverted 
barrels – one set for title and anchor hits (short barrels) and the other for full text hits (full 
barrels). This way, the short barrels are checked first and if there are not enough matches 
within them the full barrels are scanned. The final rank of a document is a combination of its 
PageRank and a score that takes account of the type of hits (title, anchor, URL, common 
text...) and the proximity of hits in multi-word queries (documents with search terms close to 
each other are ranked higher). 
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IV.3.3 Notes 

We will omit details on data structures used in Google. Instead, we will recall a couple of 
noteworthy facts. Google is implemented in C and C++ and some parts of it are written in 
Python (URL resolver and crawler). It is designed to avoid disk seeks whenever possible 
because a disk seek takes about 10 ms on average. To satisfy its storage needs it takes 
advantage of virtual files spanning across multiple file systems. Documents in the repository 
are compressed using zlib [27]. All in all, the authors of Google insist that "a Web search 
engine is a very rich environment for research ideas" [Brin98]. 

IV.4 PageRank and Other Web Page Ranking Schemes 

We will first introduce an intuitive (simplified) version of PageRank from [Page98] and then 
we will enhance it within a general formalistic framework for ranking methods by 
[Diligenti04] in Section IV.4.2. 

IV.4.1 Intuitive PageRank 

A clear analogy to PageRank is the calculation of impact of research publications in terms of 
the number of citations they have. In the Web domain a page has a citation when there is 
another Web page linking to it. From the point of view of the cited page this link is called a 
backlink. PageRank does something more than simply counting backlinks in that it assigns 
different weights to backlinks. As a result, a Web page can have a high rank if it has many 
backlinks (citations) as well as if it has only few but highly rated backlinks. 
 
Let u be a Web page and Bu the set of pages that point to u. Then let v be a Web page and Nv 
the number of links from v. Finally, let c be a normalization factor for the total rank of all 
Web pages to be constant. Then the rank (simplified PageRank) R of u is computed like this: 
 

 



uBv vN

vR
cuR

)(
)(  (10) 

 
Note that the formula (10) is recursive – for computing any page rank we need to know the 
others. Therefore, we must start with a vector of ranks initialized to some (arbitrary) values, 
iteratively update those ranks using (10) and wait until they converge. (The full version of 
PageRank converged after about 50 iterations according to [Page98].) Figure IV.3 is an 
example of a page rank calculation. There is a little problem with so called rank sinks. Those 
are closed loops of pages that accumulate rank but never distribute it further, such as in Figure 
IV.4. To overcome this trouble some modifications of the ranking function must be made 
which will be explained in the formal definition in Section IV.4.2. 
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Figure IV.3: Simplified PageRank calculation 
 

Figure IV.4: Rank sink 

IV.4.1.1 PageRank Usage 

The authors suggest a usage of PageRank in Web search, personalized Web search, browsing, 
estimating Web traffic and others. The idea in Web browsing is to display in a Web browser 
the rank of the corresponding page next to each link. This would enable a user to click only on 
links to highly ranked pages. Apparently, that requires having a proxy server between the 
browser and Web servers that communicates with Google. Google Toolbar [28] offers the 
PageRank value of the page currently being displayed in the browser. 

IV.4.2 Formal Approach 

[Diligenti04] distinguishes horizontal and vertical ranking methods. Horizontal rankings are 
only based on the Web graph topology and do not take into account the contents of Web 
pages. PageRank and HITS (see Section III.1) are both horizontal. Vertical (focused) rankings 
are useful for topic search. Diligenti's probabilistic framework is based on random walks in 
that the relevance (rank) xp of a page p is computed as the probability of visiting that page in a 
random walk on the Web graph. The most popular pages (i.e. most often cited) are the most 
likely to be visited during a random walk. 

IV.4.2.1 Random Walk 

A random walk in the context of Web browsing is a mathematical model of actions taken by a 
generic Web surfer. At each step of the walk, the surfer can perform one of the following 

100 53

9 50

50

50

3

3

3

  



State of the Art & Concepts of Doctoral Thesis  Web Search Engines 

 38 

actions: jump to any Web page (action j), follow a link to another page (action l), follow a 
backlink from the current page (action b), stay where he or she is (action s). Thus, the set of 

atomic actions is  = {j, l, b, s}. At each step, the behaviour of the surfer depends on the 
current page. If he finds it interesting, he will probably click on a link there. If he finds it 
boring, he types another URL to the address bar of his Web browser. So the surfer's behaviour 
can be modeled by a set of conditional probabilities depending on the current page q: 
 
 x(p|q, l): probability of following a link from page q to page p 
 x(p|q, b): probability of following a backlink from q to p 
 x(p|q, j): probability of jumping from q to p 
 x(b|q): probability of staying on q 
 

If G is a Web graph, p and q are Web pages (p,q  G), ch(q) is the set of pages pointed to by 
q (children of q), and pa(q) are the pages linking to q (parents of q) then the following 
constraints have to be satisfied for each page q: 
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Evidently, the first constraint in (11) includes the case of remaining on the page because p can 
be the same as q. The probabilistic random walk model can be made use of to compute the 
probability xp(t) – that the surfer is located on page p in time t. The probability distribution on 

all pages is represented by the vector x(t) = [x1(t),…,xN(t)] where N is the total number of 
pages. The probabilities xp(t) are updated in each step of the random walk according to the 
following formula: 
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where the probability x(p|q) of moving from page q to page p is expanded considering the 
user’s actions. The probabilities x(j|q), x(l|q), and x(b|q) are general probabilities of jumping 
to a random page from page q, following a link from q, and following a backlink from q, 
respectively, without specifying a target page.  
 
Now we will move to a matrix notation. The probabilities defining the random surfer model 

may be organized in a couple of N  N matrices: 
 

 forward matrix  whose element (p,q) is the probability x(p|q,l) 

 backward matrix  of the probabilities x(p|q,b) 

 jump matrix  gathering the probabilities x(p|q,j) 
 
We can also define a set of action matrices that inform about the probabilities of the 

individual actions taken on each page q. These matrices are N  N diagonal matrices having 
x(j|q), x(l|q), x(b|q) and x(s|q) as their diagonal values (q,q). We will denote those matrices Dj, 
Dl, Db and Ds, respectively. We can then restate (12) as 
 

 x(t + 1) = (  Dj)x(t) + (  Dl)x(t) + (  Db)x(t) + (Ds)x(t) (13) 
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By defining the transition matrix as 
 

T = (  Dj +   Dl +   Db + Ds) 
 
we can write (13) in the following way: 
 

 x(t + 1) = T  x(t). (14) 
 
From the initial distribution of probabilities x(0) we can compute a distribution in any time 
step t: 
 

 x(t) = T
t
  x(0). (15) 

 

Equation (15) describes a Markov chain whose state transition matrix is T. The final rank of 

all pages in the graph is the stationary distribution x() of this chain. [Diligenti04] further 
shows that on some conditions there must exist such a distribution and that it is independent 
of the initial vector x(0). 

IV.4.2.2 PageRank Calculation Based on a Random Walk 

The single-surfer model may be extended to a multisurfer walk in which the things become 
slightly more complicated. In this model there are several surfers influencing one another. But 
we are interested more in how the PageRank calculation fits into the probabilistic single-
surfer random walk framework. 
 
PageRank is a special case of the single-surfer random walk in that it considers only two basic 
actions: jumping to a random page from the current page q with probability x(j|q) = 1 – d and 
following a link from the page q with probability x(l|q) = d (d may be chosen arbitrarily 
between 0 and 1 with no effect on the convergence). The other two probabilities known from 
the general model (x(b|q) and x(s|q)) are null. Obviously, all the probabilities are independent 
of the current page q. The target page p of a jump is selected uniformly from all the N pages 

in the graph G, thus .,/1)|( GpNjpx   The probability of following a link from page q 

to page p is x(p|q,l) = q where q = 1/hq and hq is the hubness of page q, i.e. the number of 
links pointing from q elsewhere. Therefore we can rewrite (12) as 
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The fact that 0 < d < 1 implying x(j|q) = 1 – d > 0 guarantees that the PageRank vector 
converges to a distribution of scores independent of the initial distribution. Again, using a 
matrix notation, the computation of PageRank looks like this: 
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where E is the N  N identity matrix, W is the adjacency matrix of the Web graph (i.e. an 

element (p,q) = 1 if there is a link from p to q and it is zero otherwise), and  is a diagonal 

matrix whose element (q,q) = q. 
 
There is a little problem with sink pages (compare with Figure IV.4) whose hubness is zero 

(i.e. ch(q) = ) and therefore we cannot compute the term 1/hq. Instead, it should be x(l|q) = 0 
resulting in x(j|q) = 1 for any sink page q. So the PageRank equation must be modified in that 

x(j|q) = 1 – d if ch(q)   and x(j|q) = 1 if ch(q) = . Then the first term in (16) will not be 

constant but the probability 



Gq

q txqjx
N

tjpx )()|(
1

),|(  (jumping to p in time step t) needs 

to be computed at the beginning of each iteration. 

IV.4.2.3 Conclusions 

[Diligenti04] presents the HITS algorithm in terms of a multisurfer random walk notation (see 
Section III.1 for the original explanation) and compares HITS with PageRank: Computation 
of PageRank is stable and it can be applied to large document collections because small 
communities are not overwhelmed by large ones. On the other hand, PageRank does not take 
into account complex relationships of Web page citations. HITS is not stable, only the largest 
community influences the ranking but HITS understands better relations among pages. As a 
result, [Diligenti04] proposes a hybrid model called PageRank-HITS, which combines both of 
the algorithms. 
 
Vertical ranking systems consider the contents of Web pages as well as the Web graph 
topology when assigning scores. Each page is represented by a set of keywords and it gets a 
relevance value by a classifier respecting the topic of interest. For instance, the page 
www.google.com is highly ranked by a general PageRank but it would be little ranked by a 
PageRank focused on the data mining topic. From a couple of focused ranking algorithms 
“double focused PageRank” turned out to be the best. We can easily imagine applying a 
vertical ranking algorithm to finding experts in a given research domain. 
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V Existing Systems for Support of Researchers 

In the field of researchers support there exist a number of applications, mostly commercial, 
which combine classical data mining methods and visualization techniques. One exception is 
the Tétralogie project, a university based research work. Therefore, it is transparent and we 
will take a closer look at it further below. 

V.1 Commercial Solutions 

The following references to existing applications were adopted from the general work of Jean 
Archambeault [Archambeault02]. We present some interesting facts found on the 
corresponding Web sites. 
 
One personal licence of VantagePoint [29] costs 7 500 USD. Documents must be found and 
imported to the program by hand. Entrieva [30] is able to collect the documents in various 
formats even on the Web. Among others, it creates taxonomies, locates changes and alerts the 
user. OmniViz [31] treats documents in various formats (e.g. ASCII text or Excel). Among 
others, it enables detecting co-workers and topics. The user may specify concepts which 
he/she considers more or less interesting. VxInsight [32] is a classical data mining tool of 
a governmental organization. Research publications are available. The Web site has been 
moved and it is in a strange state. MicroPatent [33] provides access to a database of primarily 
patent documents. For instance, it generates topographic maps of documents and terms and 
citation trees of patents.  
 
ClearForest [34] is closest to what we would call a system for researchers support. Co-founder 
of the company is Dr. Ronen Feldman – claimed to be the father of text mining (see 
[Feldman95]). There are FBI, Kodak, Ford Motor etc. among its clients. An example of 
detection of relationships among terrorist organizations and terrorists is shown. Unstructured 
data are processed and concepts and relations are acquired from them. ClearForest offers 
several products. ClearResearch “helps researchers not waste their time reading published 
material. It provides names of key players, graphical and textual representation of their 
distribution, citations, time appearance, relations among members of an arbitrary category”, 
etc. ClearEvents monitors the Web and it informs the user about business events in real time. 
Although white papers are available, almost no technical details are known, of course. 

V.2 Free Services 

Bibster [35] is an open source project for exchanging bibliographic information among 
researchers. It consists in a peer-to-peer network of scientists in which each participant has on 
his or her computer the same software. Once a researcher enters some bibliographic 
information into it, the information is made available to all other users of the system. This is 
especially useful when another researcher cites someone’s publication and wants to find the 
exact annotation. Moreover, the list of publications maintained by a peer may reveal what is 
the domain of interest of that researcher. Of course, at the beginning some data must be typed 
in manually or it must be imported from existing BibTeX [36] files. Bibster makes use of 
ontologies and semantic Web technologies (see Section II.5 and I.6). 
 
Another free tool often utilized by scholars is ResearchIndex [37] which we omitted in Section 
IV.2.2 on specialized search engines. Its services as well as the full source code are freely 
available. ResearchIndex uses search engines (with queries “publications“, “papers“, 
“postscript“, etc.) and crawling to efficiently locate papers on the Web. Start points for 
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crawling may also be submitted by users who would like to have their documents indexed. It 
may take a few weeks after submitting to happen so. Its database is continuously updated 24 
hours a day (it comprises over 700 000 documents primarily on computer science) and the 
citation index is constructed in a fully automated way – no manual effort is needed. Operating 
completely autonomously, ResearchIndex works by downloading papers in PDF or PS formats 
from the Web and converting them to text. It then parses the papers to extract the citations and 
the context in which the citations are made in the body of the paper, storing this information 
in a database. ResearchIndex includes full-text article and citation indexing, and allows the 
location of papers by keyword search or citation links. It can also locate papers related to a 
given article by using common citation information or word similarity. Given a particular 
paper, ResearchIndex can also display the context of how subsequent publications cite that 
paper [Lawrence99b]. 
 
When enumerating free services we should not forget Google Scholar [37] for searching 
research papers, Google Alerts [38] for being informed about breaking news on a certain topic 
and others. 

V.2.1 Tétralogie 

Tétralogie was initially a data mining tool for mining information from well-structured data 
such as bibliographic databases stored on a CD (e.g. [Hubert01]). It was meant to be used for 
science and technology monitoring (scientific or technological watch). The main operation is 
performed as a sequence of information filtering, reduction, mining and knowledge 
visualization processes. Tétralogie makes use of many techniques some of which we were 
talking about earlier: concept hierarchies (i.e. taxonomies, see Section II.3), candidate terms 
detection (i.e. repeated sequences, see Section II.2.1), contingency tables, correspondence 
factorial analysis, hierarchical agglomerative clustering (see Section II.3.1) and others. 
 
A contingency table is a means of transforming non-numerical information into numerical 
information. Each contingency table is a 2D document representation. For example, a 
contingency table with rows representing the variable country and columns representing the 
variable year depicts a relative contribution of countries  to publications in time provided we 
are analyzing a collection of research papers. Each cell in the table is the number of articles 
published in the corresponding country in a given year. Contingency tables serve as input to 
different mining modules after they have been reduced by using factorial analysis methods. 
 
Tétralogie has a powerful visualization module that enables depicting collaborative networks, 
thematic maps, impact maps, topic evolution charts and others in as many as four dimensions. 
Tétralogie mines from local structured data. In the past, Tétralogie was successfully used to 
discover evolutionary trends in astronomical literature [Egret98], among others. The 
TétraFusion project [Crimmins99], which involved a cooperating Web metasearch engine and 
which allowed for Web mining, has not been made publicly available. 

V.3 Conclusions 

The topic of analyzing (Web) documents to support researchers is not new and several 
solutions may be found, particularly in the commercial area as common data mining 
applications. However, there is space for research in the public scientific field. Especially the 
functionality of ClearResearch, which is literally determined for researchers, and of Tétralogie 
might be a source of inspiration. 
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VI Goals of the Thesis 

In the sections above we have presented some state-of-the-art knowledge and open issues in 
several domains of Web mining with emphasis on its applications to supporting researchers. 
 
The aim of the doctoral thesis will be to create a Web mining support tool for researchers that 
would enable in particular: 
 

 discovering new research topics, new researchers, new Web pages 

 determining significance and activities of researchers 

 visualizing time development of researchers and research groups as well as particular 
scientific areas 

 
The principal means to achieve this will be mining (monitoring) from a flexible set of Web 
pages. We have shown that directions of some research effort may particularly be (without 
order of significance): 
 

 experimenting with various patterns for term candidate generation (see 
Section II.2.1.2) 

 finding best incremental hierarchical clustering methods for Web document 
taxonomies (see Section II.3.1.1) 

 creating a detector of personal Web pages based on pronominal distributions (see 
Section II.4.1) 

 experiment with different similarity measures between sets of elements (see 
Section II.5.1.2) 

 combining Web authorities and “real” authorities to determine “universal” authorities 
(see Section III.2) 

 applying a vertical ranking algorithm to finding experts in a given research domain 
(see Section IV.4.2.3) 

 
The resulting prototype system will dynamically mine from unstructured (Web) data and it 
will be publicly accessible and open for the scientific community. (Let us recall that neither 
ClearResearch nor TétraFusion mentioned in Section V is free and publicly available.) One of 
the possible usage scenarios would be a user selecting a topic in a hierarchy of research areas, 
then choosing a scientist active in that field and receiving a list of publications as can be seen 
in FigureVI.1. 
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Figure VI.1: Sample system screenshot 
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