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Abstract 
 
The development of information society in recent decades has enabled collecting, filtering and 
storing huge amounts of data. These data must be further processed to gain valuable 
information and knowledge. The scientific field dealing with extracting information and 
knowledge from data has evolved rapidly to cope with the extent and growth of information 
sources the number of which has geometrically increased with the appearance of the World 
Wide Web. All traditional approaches in information retrieval, knowledge acquisition, and 
data mining must be adapted for the dynamic, heterogeneous, and unstructured data on the 
Web. Web mining has come into being as a fully-fledged research discipline. 
 
The Web brings much specificity with it. The most salient feature is its link structure. The 
Web is a dynamic, linked network of nodes. Web pages contain links to other pages with 
similar contents, of a specific or more general interest, or otherwise related. Soon it was 
discovered that the link structure of Web is a vast resource of information and that it presents 
a wonderful field for applications from the social network domain as well as from the 
mathematical graph theory. Brin and Page have submitted the interlinkage of Web pages to an 
extensive research which resulted in the appearance of the now famous article “The anatomy 
of a large-scale hypertextual Web search engine” in 1998 introducing Google – a search 
engine for day-to-day usage by the whole Web community. The success of Google has been 
very much due to the underlying algorithm called PageRank, which makes use of the 
interconnection of billions of Web pages recursively so as to identify popular, prestigious, 
significant, or authoritative sources on the Web. The description of PageRank has been 
published and this results in a steady flow of new research papers on link-based methods that 
finally introduce a completely new group of algorithms – ranking algorithms. Each technique 
has its particular properties and is aimed at coping with specific problems. Although 
originally conceived for the Web, ranking algorithms are usable in every environment that can 
be modelled as a graph. 
 
The innovative portion of this doctoral thesis deals with the definitions, explanations and 
testing of modifications of the standard PageRank formula adapted for bibliographic 
networks. The new versions of PageRank take into account not only the citation but also the 
co-authorship graph. We verify the viability of the new algorithms by applying them to the 
data from the DBLP digital library and by comparing the resulting ranks of the winners of the 
ACM SIGMOD E. F. Codd Innovations Award. The rankings based on both the citation and 
co-authorship information turn out to be better than the standard PageRank ranking. In 
another part of the disseration, we present a methodology and two case studies for finding 
authoritative researchers by analyzing academic Web sites. In the first case study, we 
concentrate on a set of Czech computer science departments’ Web sites. We analyze the 
relations between them via hyperlinks and find the most important ones using several 
common ranking algorithms. We then examine the contents of the research papers present on 
these sites and determine the most authoritative Czech authors. In the second case study, we 
do exactly the same with French academic computer science Web sites to find the most 
significant French researchers in the field. We also discuss the weak points of our approach 
and propose some future improvements. To the best of our knowledge, it is the only attempt 
ever made at discovering authoritative researchers from the above countries by directly 
mining from Web data. 
 
Keywords: Web mining, Web crawling, ranking algorithms, bibliographic networks, 
citations, co-authorships, authorities, bibliographic PageRank. 



Résumé 
 
Le récent développement de la société de l’information a permis de collecter, de filtrer et de 
stocker de grandes masses de données. Le problème est maintenant d’exploiter ces données 
pour obtenir des informations et des connaissances pertinentes. Les techniques d’extraction 
des informations et des connaissances à partir de données ont rapidement évolué à cause de la 
forte croissance des sources d’informations dont le nombre a augmenté de façon exponentielle 
après l’arrivée du Web. Il faut maintenant adapter toutes les approches traditionnelles de la 
recherche d’information, de l’acquisition des connaissances et de la fouille de données aux 
données dynamiques, hétérogènes et non structurées qui se trouvent sur le Web. La fouille du 
Web est devenue une discipline de recherche reconnue. 
 
Le Web a beaucoup de spécificités. La propriété la plus caractéristique est sa structure de 
liens. Le Web est un réseau de noeuds liés et c’est aussi un réseau dynamique. Les pages Web 
contiennent des liens vers d’autres pages avec un contenu similaire, intéressant ou lié de façon 
quelconque. On a découvert assez tôt que la structure de liens du Web est une ressource 
énorme d’information et qu’elle représente un domaine typique d’application des réseaux 
sociaux aussi bien que de la théorie des graphes en mathématiques. Brin et Page ont 
largement étudié l’inter-connection des pages Web ce qui a résulté en la publication de leur 
célèbre article « The anatomy of a large-scale hypertextual Web search engine » en 1998. 
Dans leur article ils ont présenté Google – un nouveau moteur de recherche sur le Web qui est 
utilisé par des millions d’utilisateurs chaque jour jusqu’à présent. Le descriptif de PageRank a 
été publié et cela a eu pour effet la publication fréquente de nouveaux articles  scientifiques 
sur les méthodes basées sur les liens. Les chercheurs ont finalement créé un nouvel ensemble 
d’algorithmes – des algorithmes de classement (ranking algorithms). Chaque méthode a ses 
qualités spécifiques et est réservée à la résolution de problèmes différents. Même si les 
algorithmes de classement ont été conçus pour le Web à l’origine, ils sont applicables à tout 
système modélisable sous forme de graphe.  
 
La partie innovante de cette thèse porte sur les définitions, les explications et teste des 
modifications de la formule standard de PageRank adaptée aux réseaux bibliographiques. Les 
nouvelles versions de PageRank tiennent compte non seulement du graphe de citations mais 
aussi du graphe de collaboration. On vérifie l’applicabilité des nouveaux algorithmes en 
traitant des données issues de la bibliothèque numérique DBLP et en comparant les rangs des 
lauréats du prix « ACM SIGMOD E. F. Codd Innovations Award ». Les classements reposant 
sur les informations concernant à la fois les citations et les collaborations s’avèrent meilleurs 
que les classements générés par PageRank standard. Dans un autre chapitre de la thèse, on 
présente  une méthodologie et deux études de cas concernant la recherche des chercheurs 
faisant autorité en analysant des sites Web académiques. Dans la première étude de cas, on se 
concentre sur une collection de sites Web des laboratoires d’informatique tchèques.  On 
analyse les relations entre eux à l’aide de liens et on trouve les laboratoires les plus 
significatifs en utilisant plusieurs algorithmes d’évaluation courants. Ensuite, on examine le 
contenu des articles de recherche trouvés sur ces sites et on détermine les auteurs tchèques les 
plus importants. Dans la deuxième étude, on fait exactement la même chose avec des sites 
Web des laboratoires d’informatique français pour trouver les scientifiques français les plus 
éminents dans ce domaine. On discute également les difficultés de notre approche et on 
propose quelques améliorations envisageables dans le futur. 
 
Mots-clés : fouille du Web, robots Web, algorithmes d’évaluation, réseaux bibliographiques, 
citations, co-auteurs, authorité, PageRank bibliographique. 



Abstrakt 
 
Rozvoj informační společnosti v posledních desetiletích umožňuje shromažďovat, filtrovat a 
ukládat obrovská množství dat. Abychom z nich získali cenné informace a znalosti, musejí se 
tato data dále zpracovávat.  Vědecký obor zabývající se získáváním informací a znalostí z dat 
se překotně vyvíjí, aby zachytil vysoké tempo nárůstu zdrojů informací, jejichž počet se po 
vzniku celosvětové pavučiny (webu) zvyšuje geometrickou řadou. Všechny tradiční přístupy z 
oblasti získávání informací, dobývání znalostí a dolování z dat se musejí přizpůsobit 
dynamickým, heterogenním a nestrukturovaným datům z webu. Dolování z webu (web 
mining) se stal plnohodnotnou vědeckou disciplínou. 
 
Web má mnoho speciálních vlastností. Tou nejvýznačnější je jeho struktura odkazů mezi 
stránkami. Web je dynamickou, propojenou sítí. Webové stránky obsahují odkazy  na jiné 
stránky s podobným obsahem nebo na zajímavé či jinak spřízněné dokumenty. Velmi brzy se 
zjistilo, že webová struktura odkazů je ohromným zdrojem informací a že představuje 
rozsáhlé pole aplikací z oboru sociálních sítí a matematické teorie grafů. Brin a Page podrobili 
propojení webu intenzivnímu výzkumu a v roce 1998 vydali dnes už slavný článek „The 
anatomy of a large-scale hypertextual Web search engine“, v němž světu představili Google – 
webový vyhledávač pro každého. Úspěch Googlu spočívá především v algoritmu pro 
hodnocení webových stránek nazvaném PageRank. Ten využívá struktury webu k tomu, aby 
v něm rekurzivní metodou nalezl populární, důležité, významné a autoritativní zdroje. 
Technický popis PageRanku byl publikován a měl za následek doslova příval dalších 
odborných článků o metodách založených na propojení uzlů sítě, které nakonec daly 
vzniknout úplně nové skupině algoritmů – hodnoticím (ranking) algoritmům. Každá metoda 
má své zvláštnosti a umí se vypořádat s určitými problémy. Ačkoliv byly hodnoticí algoritmy 
původně vymyšleny pro web, jsou použitelné v každém prostředí, které lze modelovat grafem. 
 
Inovativní část této doktorské práce se zabývá definicemi, vysvětlením a testováním 
modifikací standardního vzorce PageRanku uzpůsobeného pro bibliografické sítě. Takto 
vzniklé nové verze PageRanku berou v úvahu nejen citační graf, ale i graf spoluautorství. 
Použitelnost nových algoritmů ověřujeme jejich aplikací na data z digitální knihovny DBLP. 
Získané žebříčky významných autorů porovnáváme s držiteli ocenění ACM SIGMOD E. F. 
Codd Innovations Award. Ukazujeme, že hodnocení založené jak na citacích, tak na 
spolupracích dává lepší výsledky než standardní PageRank. V jiné části disertace 
představujeme metodologii a dvě případové studie vyhledávání autoritativních vědců 
analyzováním univerzitních webů. První studie se zaměřuje na množinu webových stránek 
českých kateder informatiky. Zkoumáme zde propojení mezi jednotlivými katedrami a 
několika běžnými hodnoticími metodami označujeme ty nejdůležitější. Poté analyzujeme 
obsah odborných publikací nalezených na daných stránkách a určujeme nejvýznačnější české 
autory. V druhé případové studii provádíme ten samý postup s francouzskými univerzitními 
weby pro nalezení nejvýznamnějších francouzských výzkumníků v oboru informatiky. 
Rovněž se zmiňujeme o slabých stránkách našeho přístupu a navrhujeme několik budoucích 
vylepšení. Na základě našich znalostí konstatujeme, že výše uvedené studie jsou jediným 
dosud publikovaným pokusem o vyhledávání autoritativních vědců z obou zemí přímým 
dolováním z webových dat. 
 
Klí čová slova: dolování z webu, weboví pavouci, hodnoticí algoritmy, bibliografické sítě, 
citace, spoluautorství, autority, bibliografický PageRank. 
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Introduction 
At the dawn of the World Wide Web in the early 1990s, nobody actually knew what kind of 
medium was emerging. The concept of hypertext coined by Tim Berners-Lee was not 
generally known to the public, and the underlying technological infrastructure, Internet, was 
not much spread beyond some university institutions. This was to change rapidly within the 
following decade in a breath-taking pace. Millions of Web servers began to host millions of 
documents of all kinds, and  the Web’s dimension doubled every six months. It became clear 
very soon that the new medium had a huge potential to exploit. Sergey Brin and Larry Page 
were among the first to recognize the amazing possibilities of what was now called the World 
Wide Web and to make practical attempts to turn it into something more manageable. From 
1996 to 1998, they designed and implemented Google, a search engine for the Web. They 
were aware that the Web had one particularity that standard information retrieval (IR) systems 
of that time did not handle well. This feature was the presence of hyperlinks between Web 
documents. Brin and Page realized that links did not have just a navigational function, but that 
they were a kind of endorsement of a document by other documents. This analogy to 
bibliographic citations between publications made them invent and incorporate an algorithm 
called PageRank in their Web search engine.  
 
Motivations 
PageRank is a technique to order (rank) Web documents by importance, significance, 
authoritativeness, quality, prestige, influence, value, or whatever we may call it, but not by 
relevance. It is query independent, i.e. it is pre-computed and the ranks of Web pages are 
known long before they are used to sort the results for a given user query. PageRank is 
recursive – it assigns high ranks to pages that are linked to by documents that themselves have 
a high rank. With regard to the immense scope of the Web (billions of documents), PageRank 
must be calculated iteratively (i.e. approximately), and it is sometimes called the world’s 
largest matrix computation. The exact synthesis of PageRank and other IR techniques in order 
to detect relevant and high quality Web pages is proprietary information and know-how of 
commercial Web search engines which, having seen the tremendous business success of 
Google, have all added some link-based evaluation of Web documents to their ranking 
schemes.  
 
Google’s PageRank was one of the first large-scale applications of Web structure mining, a 
subdomain of Web mining besides Web content and Web usage mining. I guess that it was in 
particular the commercial success of Google that triggered interest in Web mining and Web 
structure mining. Many researchers, including me, have since tried to explore and explain 
PageRank’s properties, speed up its computation, propose its modifications, or adapt it for 
graphs different from the Web graph. The class of ranking algorithms has come into being, 
and Web mining has become a research discipline of its own. The seminal book on this topic 
by Soumen Chakrabarti from 2002 is being prepared for the second edition as disclosed in a 
personal communication with the author. The Web is the largest data repository mankind has 
ever had, and the information excess can be reduced only with filtering techniques that detect 
not only topic-relevant but also high quality information. Therefore, I reckon that the need for 
the detection of authoritative sources in the Web  will still be growing. 
 
Goals and results achieved 
The main objectives of  this doctoral dissertation can be divided into two groups.  First, I 
wanted to modify the PageRank formula and embed in it some parameters from a co-
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authorship graph so as to work better with citations between authors. In other words, I wanted 
the modified PageRank to produce a “fairer” ranking of authors by importance that is based 
on the citation as well as collaboration information. My assumption was that a citation 
between two frequently collaborating researchers  was less valuable than that between two 
authors that had never published together. The standard PageRank does not enable such a 
distinction as it is based on the citation graph only. Related work on this topic includes 
publications by Liu at al. [Liu2005] and Sidiropoulos et al. [Sidiropoulos2005]. Second, I 
wanted to apply some ranking algorithms, not necessarily novel ones, to some real and raw 
data in order to find authoritative institutions and researchers in a domain close to mine. In 
particular, I was interested in influential computer science departments in the Czech Republic 
and in France and wondered what authors would appear as significant after analysis of 
research papers found on the Web sites of those departments. In my view, no such analysis 
had ever been published. One can encounter some similar work in the articles by Thelwall and 
his colleagues [Thelwall2001, Thelwall2002, Li2003], but they are interested in universities 
rather than departments, and they do not analyze documents on the Web sites. 
 
Coherently to the goals above, I consider my main contributions to be: 
 

• Bibliographic PageRank. I proposed and implemented several modifications of the 
standard PageRank formula so as to better suit the need for a fair ranking of authors. 
Unlike the standard PageRank, the new formula takes into account citations as well as 
collaborations of authors. I tested the new method on the data from the DBLP digital 
library and compared  the new author rankings with a list of ACM award winners. I 
can conclude that the new methods generally outperform PageRank. 

 
• Mining the Czech and French academic Web. I also mined Web sites of Czech and 

French computer science departments and determined authoritative institutions and 
researchers. Due to the noise in the data, I prefer to underline it as a unique case study, 
the first of its scope and domain, in which I combine Web mining and information 
extraction techniques. The methodology I use is quite general and is thus applicable to 
completely distinct fields as well. 

 
Thesis outline and ommissions 
In chapters I and II, I discuss state-of-the-art approaches to Web structure mining. – Web 
crawling, a prerequisite of mining, in Chapter I and ranking algorithms for Web pages (or 
sites), the main tool for the detection of authoritative sources on the Web, in Chapter II. 
Chapter III deals with social networks, a domain that strongly influences Web structure 
mining. In Chapter IV, I present a few systems available on the Web that may help, among 
others, identify influential researchers and thus may be used in comparisons of author 
rankings. I introduce DBLP here, further employed in Chapter V on the bibliographic 
PageRank, the main innovative part of the thesis. I describe experiments with mining the 
academic Web in Chapter VI,  and I summarize the dissertation afterwards. Some results from 
chapters V and VI are shown in the appendix. 
 
At the end of the thesis, I enclose a list of over a hundred article references and several dozens 
of Web references. Actually, there could be more of them – in an order of magnitude! Such is 
the scale of Web mining. Thus, I made a number of omissions in the state-of-the-art sections 
to keep a reasonable scope of the thesis. For instance, I do not cover vertical (focused) 
crawling, information extraction, PageRank energies, eigenvector theory, the work by Mike 
Thelwall and others. 
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I Web Graph and Its Crawling 

The World Wide Web is a gigantic dynamic network currently containing tens of billions of 
nodes [e.g. Gulli2005]. Web pages appear and disappear, their contents are modified. Links 
between pages are added or removed and the Web of today is not what it was yesterday. How 
are the new Web documents created? Which nodes do they link to most frequently? What 
does the Web graph look like? Are there any regularities to observe? The behaviour of social 
networks, one of which is the Web graph, is far from being fully understood [Newman2003]. 
Nevertheless, much research has been devoted to the analysis of the Web as a graph with 
view of answering some of the questions asked. To be able to study the Web, we need to 
collect the Web data first. This process known as crawling is not trivial, and we present the 
state-of-the-art knowledge and current trends in the second part of this overview chapter. 
 

I.1 Web as a Graph 
The very early simple random graph model with the number of nodes n and the same uniform 
probability p of the appearance of each of n(n – 1) possible edges does not seem to be in 
accordance with the real Web graph [Chakrabarti2002, p. 243]. This model had to be 
improved and verified in practical experiments. Since the Web graph model is not the key 
element in this thesis, we just briefly mention two of its interesting properties, namely the 
power law degree distribution and the bow tie structure, and we refer to the most recent 
survey articles on this topic [Chakrabarti2006, Donato2007]. Moreover, the latter introduces a 
free software library for generating and measuring huge graphs. Among others, a deep 
understanding of Web graph models may have a great impact on the design and 
implementation of ranking algorithms for Web sites, the best-known of which we cover in 
detail in sections II.2 and II.3. 

I.1.1 Power Law Degree Distribution 
One of the first phenomena of the Web observed was the power law degree distribution. It 
answers the question with what frequency Web pages with a certain in- or out-degree occur in 
the Web graph. The power law resembles the Zipf’s law, in which an object ranked on the k-
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th position by the number of occurrences occurs approximately N/k-times where N is the total 
number of all objects’ occurrences. In the power law, k is not a rank but a degree size, and 
there is an exponent over it. Thus, the probabilities Pr(din(p) = k) and Pr(dout(p) = k) of Web 
page p having an in-degree k or out-degree k are the following: 
   

11))(Pr( αkkpdin ∝=  (I.1) 
21))(Pr( αkkpdout ∝=  (I.2) 

 
where α1 and α2 are coefficients varying from 2.1 to 2.7 [Kumar1999, Barabási1999, 
Kleinberg1999a, Bröder2000]. See Figure I.1 for the plots of degree distributions. Note that 
the power law holds also for the Web graph when intra-site links have been removed (denoted 
as “remote only” in the figure). 
 
Although the power law degree distribution has been determined empirically, it can be proven 
theoretically as well. Barabási and Albert [Barabási1999] proposed a Web-suited random 
graph model, in which new nodes are continuously added and preferentially attached to nodes 
that already have a large in-degree. This is sometimes called the “winner takes all” or “rich 
get richer” scenario (compare with PageRank in Section II.2). This model was later amended 
by Pennock et al. [Pennock2002] so as to give less popular nodes a greater chance to get in-
links from newly added nodes. This refinement was found to better fit the power law function. 
 

  
 

Figure I.1: Power law of in and out-degree distributions of Web pages [Bröder2000]. 

 

I.1.2 Bow Tie Structure 
When analyzing the Web structure, Bröder and his colleagues [Bröder2000] discovered 
something unexpected. They examined two Web crawls of about 200 million pages and a 
billion and a half links in a half-year interval and repeatedly found out that the Web’s 
connectivity was limited by a global structure shown in Figure I.2. They called it the “bow tie 
structure” of the Web. In their experiments, the weakly connected Web (i.e. connected when 
treated as an undirected graph) made up 90% of the whole Web crawled and consisted of four 
parts of about the same size. There was a strongly connected core (SCC), in which each node 
has a directed path to any other node, and three weakly connected components – IN with 
nodes having paths into SCC but not reachable from there, OUT with pages reachable from 
SCC but with no paths into SCC, and tendrils, which were weak components attached to IN 
and OUT.  Some pages in OUT were reachable from IN via tubes, but not vice versa. Besides 
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the pages mentioned so far, there were also some 16 million Web pages forming separate 
disconnected components.  
 
Bröder also made assumptions about the components’ functionality. He suggested that the 
pages in IN were newly created pages not yet having been linked to from other pages. The 
pages in OUT might be corporate Web pages that never point to the “centre of events” in 
SCC. The authors of the experiment showed that the diameter of SCC was 28 at least. The 
diameter is the maximum of the shortest paths between any two nodes in that component. 
(See also Section III.3.)  As for the graph as a whole, they determined that if there was a 
directed path between two nodes, its length was 16 on average. If there was an undirected 
path, its average length was six. Finally, the authors found out that the distributions of weakly 
and strongly connected components also followed the power law (see Section I.1.1). Although 
the experiments above are relatively old now, their conclusions were confirmed later on. Dill 
et al. [Dill2002] verified the existence of the bow tie structure even in subgraphs of the Web, 
e.g. given a top-level domain or a keyword occurrence, etc. Nevertheless, the Web is a 
dynamic organism, and it is unsure whether it will still adhere to the bow tie model in the 
future. 
  

IN SCC OUT

Tendrils

Tubes

Disconnected
components  

 

Figure I.2: The bow tie structure of the Web [Bröder2000]. 

 

I.2 Web Crawling  
Web crawling or spidering is the process of collecting Web pages and other Web documents 
by recursively following the out-links from a set of starting (seed) pages. Its primary goal is to 
create a corpus of Web documents that could subsequently be indexed by a Web search 
engine in order to respond to users‘ requests. Every search engine relies on its indexed corpus 
and so the way of its creation is essential. The role currently played by Web search engines in 
the world is incontestable, and, therefore, it is somewhat surprising that crawling is still 
under-represented in the Web mining research. The experiments described in 
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Chapter VI could not have been conducted without Web crawling techniques, so we find 
useful to incorporate a section on this topic in this dissertation. Unless we indicate another 
source of information, the facts presented here come from our own experience, the most 
comprehensive overview of Web crawling strategies ever by Baeza-Yates et al. [Baeza-
Yates2005] or from the Web mining book by Chakrabarti [Chakrabarti2002, ch. 2]. 

I.2.1 Architecture of a Web Crawler 
Figure I.3 depicts the typical architecture of a large-scale Web crawler. By a large-scale 
crawler we mean a system capable of gathering billions of documents from the current World 
Wide Web. It is clear that with such a huge amount of data more sophisticated techniques 
must be applied than simply parsing HTML files and downloading documents from the URLs 
extracted from there. As we may see at the picture, much attention is paid to the problems of 
avoiding Web pages (URLs) already visited before, parallelizing crawling (fetching threads) 
and balancing the load of Web servers from which documents are obtained (server queues), 
and speeding up the access to Web servers (via DNS caching). We will give some notes on 
these issues further below. 
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Figure I.3: Architecture of a typical Web crawler [Chakrabarti2002, ch. 2]. 
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The role of Web crawling 
Since Web crawling is at the heart of each Web search engine, rather general architectural 
descriptions of crawlers without important details have appeared so far. Commercial search 
engines treat their Web crawling techniques as business secrets and prefer not to give their 
rivals a chance to take advantage of their know-how. Another reason is to keep essential 
information on crawling away from search engine spammers who would abuse the 
information. (Search engine spammers deliberately create, remove or modify Web pages on 
the content as well as link level so as to promote in the result list to a given query those pages 
that would otherwise have been unnoticed. Search engines must defend themselves against 
such attempts and develop anti-spam techniques  [Wu2005].)  Some of the crawler 
architectures published are that of Alexa [Burner1997], which is still the Web robot of the 
Internet Archive [38], an early version of Googlebot [Brin1998], being the crawler of Google 
[39], Mercator [Heydon1999], which was the spider of AltaVista [40], Ubicrawler 
[Boldi2004b], and Dominos [Hafri2004]. Parallel crawling architectures are proposed in 
[Cho2002]. There have also been Web spiders released as free software under the GNU public 
licence [35], [36], [37]. 
 
In general, a Web crawler takes a URL from the queue of pending URLs, it downloads a new 
page from the URL, it stores the document to a repository and it parses its text to find 
hyperlinks to URLs, which it then enqueues in the queue of pending URLs in case they have 
not yet been downloaded (“fetched”). Ideally, crawling is stopped when the queue of pending 
URLs is empty. In practice, however, this will never happen as the universe of a large-scale 
Web crawler is almost infinite. The Web is steadily changing and will never be crawled as a 
whole. So a reasonable terminating condition must be set up for the crawler to stop. For 
example, a certain number of documents have been fetched, a specific number of terabytes of 
data has been downloaded, a particular time period has elapsed, or the crawler simply runs out 
of resources (main memory, storage capacities, etc.). 
 
Internals 
More specifically, a Web  spider would like to do many activities in parallel in order to speed 
up the process of crawling. In fact, the DNS name resolving, i.e. getting IP address of an 
Internet host by contacting specific servers with name-to-IP mappings, and opening an HTTP 
connection to a Web server may take up to a second which is often more than receiving the 
response from a Web server (i.e. downloading a small or middle-sized document with a 
sufficiently fast connection). So the natural  idea  is to fetch many documents at a time. 
Current commercial large-scale Web robots fetch up to several thousands of documents in 
parallel and crawl the “whole” Web (billions of documents) within a couple of weeks. 
Interestingly, parallelization objects offered by operating systems such as processes and 
threads do not seem advantageous for multiple fetching of thousands of documents due to 
thread (process) synchronization overheads. Instead, a non-blocking fetching via 
asynchronous sockets is preferred. Indeed, present commercial search engines work with such 
huge amounts of data that they have to use technologies that are often beyond capabilities of 
traditional operating systems. Google, for example, has a file system of its own 
[Ghemawat2003]. 
 
Implementors of large-scale Web crawlers try to reduce the host name resolution time by 
means of DNS caching. The DNS server mapping host names to their IP addresses is 
customized and extended with a DNS cache and a prefetching client. The cache is preferably 
placed in the main memory for a very fast lookup in the table of names and IPs. In this way, 
server names that have already been put in the cache before can be found almost immediately. 
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New names, though, have still to be searched for on distant DNS servers. Therefore, the 
prefetching client sends requests to the DNS server right after URL extraction from a 
downloaded page and does not wait until the resolution terminates (non-blocking UDP 
datagrams are sent). Thus, the cache is filled up with corresponidng IPs long before they are 
actually needed. (DNS requests are kept completely away from a common Web surfer. It is 
the Web browser that gets all the work done.) 
 
Avoiding redundancy 
The biggest task of a crawler is to avoid redundancy by eliminating duplicate pages and links 
from the crawl. A crawler that does not respect this may easily end up in a spider trap – an 
infinite loop of links between the same pages. Such a trapped spider can “crawl” the Web for 
ages and collect petabytes of data, but it will be useless, because it gets stuck in just one place 
of the Web. There must be a module (isUrlVisited?) that checks whether or not a page has 
been already fetched before putting its URL to the working pool of pending documents 
(sometimes called frontier). The intuitive solution is to have a list of URLs already visited and 
to compare each newly extracted URL against this list. Unfortunately, many problems arise 
here: 
 

• Different forms of URLs. URLs occur in various forms. They may be absolute or 
relative, they may or may not include port numbers, fragments, or queries, thay may 
contain special or even non-latin characters, they may be in lower case or upper case, 
etc. Before we can attempt to compare URLs, we have to normalize them and produce 
the so-called canonical form. In this form, every URL is absolute, with the host name 
in lower case, without non-latin characters and so on. 

 
• Too many URLs. To crawl a significant portion of the Web, we would need to store 

somewhere a few billions URLs for further comparisons. Imagine that an average 
normalized URL is fifty characters long. Even for a one-billion-pages crawl, a storage 
capacity of 50 billion bytes (50 GB) would be required. Moreover, access to the list of 
URLs visited must be very fast as the check will be very frequent. How to resolve this 
difficulty? We can somewhat reduce the size of URLs by encoding them into MD5 
fingerprints or CRC checksums. These fingerprints may be four to eight bytes long 
according as how many URLs we suppose to crawl. In addition, we can use each 
fingerprint as a hash and store the URLs in a hash table on disk. Disk seeks will still 
be slow, but we can improve this with a two-level hashing – host name hashing and 
path hashing will be done separately for each URL. 

 
• Duplicate pages with different URLs. Even if we are careful enough and never crawl 

the same URL twice, we can still download pages with the same content if they have 
different URLs. In order to avoid adding links to the frontier that appear as new, 
because they are relative to the page with a different URL but with a duplicate content, 
but in reality have been added before, it is necessary for each newly fetched page to 
check whether it has been downloaded yet (isPageKnown? module in Figure I.3). 
Again, we can use the MD5 hash function here. We will maintain a list of fingerprints 
of fetched pages’ contents and compare each new page against it. Unfortunately, only 
a very small difference between two pages that are otherwise considered as duplicate, 
such as a different time stamp at the bottom of the page, results in distinct fingerprints, 
and  the duplicates recognition fails. Thus, the process must be enhanced by a 
technique called shingling [Bröder1997],  which detects near duplicates. 
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Care must be taken not to overload Web servers with requests. Not only does it prevent a 
denial of service by the Web servers, but it is also a measure of politeness to other Web users. 
Ideally, the load monitor & manager distributes requests evenly among servers, for each of 
which there is a queue pending  URLs. It controls that the interval between two requests sent 
to the same server be no less than, say, a minute. Besides others, fetching pages uniformly 
from distinct servers reduces the risk of getting stuck in a spider trap. 
 
Dynamic pages 
We have seen that the greatest danger for a Web crawler consists in not recognizing that a 
Web page has already been fetched before. If this happens, the spider may easily crawl a very 
small part of the Web infinitely long. The main source of such difficulties are page 
duplication and site mirroring (i.e. duplication of whole Web sites), dynamically generated 
pages and Web host aliases. A computer with a certain IP address may be represented by one 
or more host names (virtual servers). On the other hand, a Web site may be hosted by several 
machines with distinct IPs. This many-to-many relation between host names and IPs along 
with aliases (synonymous names of a Web site) makes the recogniton of known URLs even 
more difficult. Besides shingling for duplicate pages, there exist techniques for the detection 
of mirrored Web sites [Bharat2000, Cho2000, Kumar1999] thay may help resolve this 
problem as well. But by far the biggest trouble is with dynamic pages such as CGI, PHP, or 
Java scripts. 
 
Dynamic pages are dangerous in that they can generate whatever content (including what we 
are not at all interested in), and that their number may be virtually infinitely large. Dynamic 
pages often contain generated URLs that differ only in one parameter of their query part. 
Also, they are often results of a database query depending on what the Web user types in a 
Web form, etc. It is feasible to store nor fingerprints of their URLs neither of their contents 
because of their immense number. How can we overcome this problem? The most robust 
spider would just ignore dynamic pages. However, it would probably miss a lot of important 
data. There have even been attempts to crawl the hidden Web behind Web forms 
[Raghavan2001]. In practice, we must still observe crawling statistics and  set bounds for 
various parameters such as the number of documents gathered on a site or the crawling depth 
(i.e. the number of links followed leading to the current page). Whenever a bound is 
exceeded, crawling as a whole or just on that particular site is stopped. For example, for the 
crawling in Section VI.1.1, we determined the maximum crawling depth to be eight. This is in 
accordance with Baeza-Yates [Baeza-Yates2005, Baeza-Yates2004]. He recommends five for 
static pages and fifteen for dynamic pages.  

I.2.2 Crawling strategies 
Assume for simplicity that we are to crawl a small part of the Web that is a tree. Because we 
are sure that this part of the Web is finite and that we are going to visit all of its pages, we can 
arbitrarily choose one of the two basic crawling methods – breadth-first or depth-first 
crawling. Let us recall that with breadth-first crawling, we first visit nodes  with the same 
distance (number of links) from the root node. The data structure used here to store links 
extracted from pages is a queue. On the other hand, in depth-first crawling, we follow links as 
deep as we can. We put them on a stack.  See Figure I.4 for a small example. Which of the 
two strategies is better? In this simple case, they are the same provided we are not interested 
in the order of visiting individual pages. At the end, we will have a set of documents which 
we can, for example, add to a corpus and build an index on it. 
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Figure I.4: Breadth-first (left) and dept-first (right) crawling of a simple Web tree. 

 
In practice, however, neither is the Web graph a tree (and we must apply the techniques from 
Section I.2.1 to avoid crawling loops) nor can we collect all documents. Thus, if we know that 
we will not be able to crawl all pages, we would like to crawl the more important ones at 
least. Therefore, we expect a good crawling strategy to visit more important pages sooner 
during the crawl than a bad crawling strategy. We deal with the importance of Web pages in 
Chapter II and in Chapter III. Here, we only associate a value of significance with each Web 
page and set the total significance of all pages in the Web graph to be crawled to be one. 
Then, at any time point of the crawl, we can plot the importance value of  all the pages 
crawled so far against the fraction of the total number of pages to crawl. 
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Figure I.5: Performance of a crawler sampling Web pages at random. 

 
In a crawl, where pages would be picked up randomly (and uniformly) from the graph, the 
plot would be approximately diagonal like in Figure I.5. (In fact, a truly random sampling of 
Web pages from the real Web is quite a difficult task, which we do not cover in this thesis. 
See [Chakrabarti, pp.246-253] for more information on this.) The diagonal line may be 
considered as a baseline, and any crawler whose performance curve plotted on the chart is 
above the diagonal line is a more effective spider. Of course, normally we know neither the 
total number of pages on the Web nor their importance. Therefore, this measurement is 
possible for synthetic (artificial) graphs, when the number of pages and their importance are 
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known before, or for pre-crawled Web graphs with all the values required already computed. 
In both cases, we call these “artificial” spiders crawling simulators. Alternatively, we can 
measure crawling performance retroactively and compute all the values when the crawl has 
finished. 
 
Baeza-Yates defines three groups of crawling strategies: 
 

• With no extra information . When deciding which page to crawl next, the spider has 
no additional information available except knowing the structure of the Web crawled 
so far in the current crawl. 

 
• With historical information . The crawler additionally knows the Web graph 

obtained in a recent “complete” crawl. This is common for search engine spiders that 
regularly crawl the Web in several-week intervals. Typically, the spider knows what 
pages existed a couple of weeks ago, what links they contained and what importance 
the pages had which was computed after the crawl. Although the Web changes very 
fast (about 25% new links are created every week [Ntoulas2004]), the historical data 
were too costly to acquire so that it could be entirely neglected. Thus, the selection of 
a next page to crawl will be based on the historical information.  

 
• With all information . This is a theoretical strategy not usable in a real Web crawl. 

We will call it the omniscient method, which perfectly knows the whole Web graph 
that should be crawled including the values of importance of individual pages. This 
method always chooses the page with the highest importance from the frontier. 

 
Crawling strategies with no extra information 
 

• Breadth-first . We mentioned this technique earlier. It is reported to collect high 
quality (important) pages quite soon [Najork2001]. On the other hand, depth-first 
strategies are not much used in real Web crawling, also because the maximum 
crawling depth is worse controllable in them. 

 
• Backlink-count [Cho1998]. Pages in the frontier with a higher number of in-links 

from pages already downloaded have a higher priority of crawl. 
 

• Batch-PageRank [Cho1998]. We will talk about PageRank in Section II.2. Now, we 
can think of it as importance. This technique calculates PageRank values for the pages 
in the frontier after downloading every k pages. Of course, these PageRanks are based 
on the graph constituted of the pages downloaded so far, and they are only estimates 
of the real PageRanks derived from the whole Web graph. After each re-calculation, 
the frontier is prioritized according to the estimated PageRank and the top k pages will 
be downloaded next. 

 
• Partial-PageRank. It is like Batch-PageRank but with temporary PageRanks assigned 

to new pages until a new re-calculation is done. These temporary PageRanks are 
computed non-iteratively unlike normal PageRanks as the sum of PageRanks of in-
linking pages divided by the number of out-links of those pages (the so-called out-link 
normalization). 
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• OPIC [Abiteboul2003]. This technique may be considered as a weighted backlink-
count strategy. 

 
• Larger-sites-first. This method tries to cope best with the rule that Web sites must not 

be overloaded and choose preferentially pages from Web sites having a large number 
of pending pages. The goal is not to have at the end of the crawl a small number of 
large sites, because that would slower down crawling due to the delay required 
between two accesses to the same site.  

 
Crawling strategies with historical information 
Again, we would like to order the pages in the frontier by their PageRank and crawl the more 
important ones first. For the pages encountered in the current crawl that existed when the last 
crawl was run, we use their historical PageRank even though we are aware that their current 
PageRank may have changed. The pages that did not exist then have to  be assigned some 
estimates. There are several methods how to deal with these new pages: 
 

• Historical-PageRank-Omniscient. Again, it is a theoretical variant which knows the 
complete graph and assigns “true” PageRanks to the new pages. 

 
• Historical-PageRank-Random. It assigns to the new pages random PageRanks 

chosen from those computed for the previous crawl.  
 

• Historical-PageRank-Zero. New pages are all assigned a zero PageRank and are thus 
crawled after “old” pages. 

 
• Historical-PageRank-Parent. Each new page is assigned an out-link-normalized 

PageRank of its parent page(s) linking to it. If a parent page is new as well (there is no 
historical PageRank associated with it) we obviously proceed to the grandparent and 
so forth. 

 
Recommendations 
Baeza-Yates and his colleagues conducted crawling simulations as well as real crawls of the 
Web graph of the whole Greek (.gr) and Chilean (.cl) national domains. The total number of 
Web pages crawled was in the order of millions of pages. Their experiments confirmed the 
following. The omniscient technique is the best as expected except the last crawl stages (see 
Figure I.6 with the performance chart of crawling the Greek Web in September 2004). It 
crawls important pages fast, perhaps too fast so that it needs to select pages more or less at 
random towards the end of the crawl in order not to overload Web sites. From the strategies 
with no extra information backlink-count and partial-pagerank are the worst. In some 
crawling stages they are even worse then the baseline random (“diagonal”) method (not in 
figure).  Breadth-first performs very well for the first 30% of total pages to crawl, then its 
efficiency slightly decreases. Batch-pagerank, OPIC and larger-sites-first are the most 
efficient crawling strategies. The importance of the first 25% of pages they collect is more 
than 50% of the overall significance spread over pages in the graph. 
 
Figure I.7 shows the performance of the various methods using historical information 
compared with the omniscient variant and OPIC. The “historical” methods take advantage of 
a complete crawl from May 2004 when only 55% of pages in the current crawl existed. 
Surprisingly, historical-page-rank-random is doing quite well even though 45% of randomly 
evaluated pages may seem a lot. A possible explanation is that very important pages are 
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relatively stable, and that it is the “less significant” part of the Web that changes. OPIC is less 
efficient at the beginning, but it improves later on. After some further measurements,  Baeza-
Yates concludes that “historical” strategies are “marginally better” than OPIC and larger-
sites-first, and he recommends to use the latter for practical reasons. Larger-sites-first is more 
suitable for distributed crawlers, for no communication is needed between crawlers to 
exchange information on weighted in-links to a given page like in OPIC. 
 

 
 

Figure I.6: Crawling methods performance with no extra information [Baeza-Yates2005]. 

 

 

 

Figure I.7: Crawling methods performance with historical information [Baeza-Yates2005].  
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I.3 Summary 
Studying the models of the Web helps us realize how vast, dynamic, and heterogenous it is. It 
also makes us wish to understand in detail its structure and behaviour. However, we cannot 
study anything before we crawl it. Crawling the Web is a prerequisite of Web mining. Before 
we can apply any Web mining techniques to some Web data, we first need to obtain the data 
somehow. Certainly, there exist archives of complete Web crawls available for researchers or 
free crawling software ready to use (both mentioned above). Nevertheless, they are difficult or 
even impossible to customize so as to meet very specific crawling needs. Furthermore, 
without realizing how difficult and complex Web crawling is and without understanding its 
internals to some extent at least, one could hardly consider oneself as a Web mining 
researcher. The code of a spider used in the present research can be found on the companion 
CD of this dissertation. 
 
We did not cover focused crawling in this chapter. The aim of a focused (or also vertical) 
Web spider is to download topic-relevant documents and not all documents. Such crawlers 
need to classify pages in relevant (on a given topic) and irrelevant ones and follow links from 
the on-topic pages only. Performance of vertical spiders can be measured in the same way as 
we show in Section I.2.2, but instead of a general importance of pages crawled, we are 
interested in their topical importance. There are a number of methods that deal with this 
problem such as reinforcement learning [Rennie1999], context graphs [Diligenti2000], neural 
networks [Chau2003] or those proposed in [Chakrabarti1999]. There is an overview of 
focused crawling techniques in [Chakrabarti2000, pp. 268-283]. 
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II Ranking Algorithms for Web Sites 

We have understood the term importance used throughout Section I.2  rather intuitively until 
now. However, everyone recognizes that not all Web documents are important, valuable. The 
overwhelming majority of Web pages are useless for a particular Web user. They are not 
relevant to the topic the user is interested in. This can be figured out by filtering Web 
documents (classifying their textual content) and providing the user the relevant ones only. 
But do all the on-topic documents have the same quality? Everybody who has experience with 
searching for information on the Web will agree that they do not. Thus, in addition to 
relevance filters, some further criteria must decide which documents are worth our attention 
and which are not.  
 
In 1998, two PhD students from the Stanford University in California, Sergey Brin and Larry 
Page, published a report on their project of a large-scale Web search engine called Google 
[Brin1998]. They described its architecture and also gave details of a new algorithm for 
ranking Web pages by importance – PageRank. (Curiously enough, page in its name can 
mean a Web page but also the surname of one its inventors.) What was then a University 
project has developed into a commercial multi-billion-dollar-revenue company operating a 
Web search engine serving hundreds of millions of users every day. Approximately at the 
same time, Jon Kleinberg proposed another algorithm for determining significant Web pages 
called HITS  [Kleinberg1999b] but  made to attempt to commercialize it. It remained as an 
academic foundation. 
 
We can only guess that it was the commercial success of Google that raised an immense 
interest in the new group of algorithms for detecting significant Web pages that later earned 
the name of ranking or topic-distillation algorithms. New ranking methods and modifications 
appeared soon and the publication stream does not seem to fade out - SALSA, TruRank, 
BackRank, ObjectRank, AuthorRank, SCEAS Rank, etc. In this chapter, we will concentrate 
on PageRank and its modifications that has become extremely popular, and we will deal with 
HITS to much lesser extent. 
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II.1 First-Order Methods 
A simple and intuitive procedure of ordering Web pages by importance is to count in-links of 
a Web page. To formalize, let G = (V, E) be a directed, edge-weighted graph (Web graph), V 
a set of vertices (Web pages) and E a set of edges (hyperlinks among Web pages). Then, we 
can calculate the number of in-links of each node u in the graph like its in-degree: 
 

∑ ∈
=

Euvin uvwuD
),(

),()(  (II.1) 

 
where w(v, u) is the weight of the edge pointing from node v to node u and we assume that all 
edge weights are set to one. We will refer to this ranking mechanism as In-Degree. The In-
Degree ranking is called a first-order or radius-1 method. The score obtained for a node 
depends only on its direct neighbours. In other words, nodes not sharing the same edge have 
no influence on each other. This is in contradiction with real life as objects in social networks 
(Web may be considered a social network – see Chapter III) often have an indirect impact on 
one another. PageRank and HITS are higher-order techniques and take this into account. If 
the values of weights w are allowed to be more than one, we call the in-degree a weighted in-
degree. Although it is usually not much useful to determine authoritativeness of a Web page 
or Web site (according to the level we are interested in) by means of weighted in-degrees, 
because parallel edges between them are mostly ignored, it is appropriate to do so in other 
graphs such as bibliographic citation graphs. We can then call the weighted in-degree a 
citation count or simply citations (compare with Section III.2.1 and V.3.3).   

II.2 PageRank 
We will first introduce PageRank as presented in [Brin1998, Page1999] in a intuitive manner 
in Section II.2.1, and then we will enhance it within a linear system formulation 
[Bianchini2005] in Section II.2.2 and a probabilistic framework for ranking methods by 
[Diligenti2004] in Section II.2.3. In Section II.2.4, we discuss convergence issues, and we 
describe a PageRank modification that is most related to the innovative work in this thesis in 
Section II.2.5 – PageRank for publications by [Sidiropoulos2005]. Finally, we enumerate 
current research issues and trends on this topic [Langville2003] in Section II.2.6. 

II.2.1 Primer 
Using the Web graph G = (V, E) from Section II.1, the PageRank score PR(u) for page u 
introduced by Brin and Page is defined as follows: 
 

∑
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where d (damping factor) is an empirically determined constant usually set between 0.8 and 
0.9 and Dout(v) is the out-degree of node v computed analogically to (II.1). Note that 
PageRank of one node is dependant on PageRanks of other nodes, which can, in turn, be 
directly or indirectly (via other nodes) supplied with PageRank from the current node. So 
there is a recursion that allows influencing any other node to which there is a path from the 
current node. 
 
Normalization of the rank obtained from in-linking nodes by their out-degree is a salient 
feature of PageRank. It penalizes nodes linking to many others. This is in accordance with 
real world situations: a citation by a researcher citing often is less valuable than that made by 
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someone who cites rarely. Figure II.1 shows the idea of such an out-link normalization in 
PageRank computation. (1 - d) is a randomizing factor representing the possibility to jump to 
any node in the graph regardless of the out-edges from the current vertex. On the contrary, d 
stands for the probability of following an out-link from the present page. Introducing the 
random term prevents loops of nodes (called rank sinks) from accumulating too much rank 
and not propagating it further. See Figure II.2 for a rank sink example. There is also a 
difficulty with nodes with no out-links (referred to as dangling pages) that would not 
distribute their PageRank either. In fact, zero-out-degree Web pages and rank sinks are the 
main obstacles in a straightforward computation of PageRank. Why are pages with no out-
links and closed loops of pages so annoying and how are these problems resolved will be 
shown later on.  On the other hand, nodes without in-links are not harmful, and their 
PageRank is always smaller than that of any nodes with some in-links as follows from (II.2).   
 
 

 

Figure II.1: Main idea of a PageRank calculation [Page1999]. 

 
 

 

Figure II.2: Rank sink example. 
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Iterative Calculation 
In practice, we compute PageRank as follows. 
 

1. We remove duplicate links and self-links from the graph. 
2. We set initial PageRanks of all nodes in the graph uniformly so that the total rank in 

the system is one. This is the zeroth iteration. 
3. We remove nodes having no out-links iteratively because removing one zero-out-

degree node may cause another one to appear. 
4. We compute the PageRank scores for all nodes in the residual graph according to 

(II.2) using the scores from the previous iteration. We perform an L1 normalization so 
that the total rank in the system (including the vertices removed in step 3) is one again. 

5. We repeat step 4 until convergence. Numerical convergence of the scores is usually 
not necessary. An ordering of nodes (by PageRank) that does not change (or changes 
relatively little) is satisfactory [Chakrabarti2002, p. 211]. 

6. We gradually add back the nodes removed in step 3, compute their rank score like in 
(II.2) and re-normalize the whole system. 

 
Properties 
The number of iterations needed depends on the number of nodes and edges in the graph. For 
a Web graph with over 320 million pages, roughly 50 iterations were required [Page1998].  
The order of the nodes added back in as well as the frequency of normalization may affect the 
final rank scores, however, it should not have a large effect on the ranking itself. The property 
of the overall rank being one at each time step justifies the explanation of PageRank 
calculation in terms of  a random walk. In fact, the PageRank score of a Web page is then a 
fraction of time spent on this page by a random Web surfer browsing on the Web for some 
infinitely long time. For a detailed analysis of the random walk framework, see 
[Diligenti2004] and an excerpt in Section II.2.3. For some more details including matrix 
notation of (II.2), see [Chakrabarti2002, pp. 210-211] and [Ding2001b]. There exist 
PageRank modifications. For instance, the one proposed by [Sidiropoulos2005] is meant 
particularly for bibliographic citation graphs. 

II.2.2 Linear System Guise 
Web matrices 
Before we can explain how to compute PageRank scores for a Web graph by solving a system 
of linear equations, we first need to define two matrices. Let G = (V, E) be a Web graph as 
before, A its adjacency matrix, and T its transition matrix. Let Aij be one if i links to j, i.e. if 
there exists (i, j) ∈ E, and zero otherwise. Clearly, A is asymmetric and it imposes no 
restrictions upon the existence of self-links or parallel edges. By normalizing elements in A  
by out-degree and transposing A, we obtain the transition matrix: ∑=

k ikijji AAT / . An 

example of a Web graph and its corresponding matrices A and T is shown in Figure I.3. 
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1

5

7

4

6

2

3

9

8

G = (V, E)

  0  0 0 0 1/3   0  0 0   0
1/2 0 0 0   0    0  0 0   0
  0  1 0 0   0    0  0 0 1/2
1/2 0 0 0 1/3   0  0 0   0
  0  0 0 0   0  1/2 0 0   0
  0  0 0 0   0    0  0 0   0
  0  0 0 0 1/3 1/2 0 1   0
  0  0 0 0   0    0  0 0 1/2
  0  0 0 0   0    0  0 0   0

0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0

A T  
 

Figure II.3: Example of a Web graph and its adjacency (A) and transition (T) matrix. 

 
Linear system 
Now, we put all PageRanks in the Web graph PR(1), PR(2),…, PR(N) into a PageRank vector 
x = [x1,x2,…,xN]T and apply (II.2) to the whole graph: 
 

x = (1 - d)eN + dTx (II.3) 
 
where eN = [1,...,1]T is a unity column vector of N ones. We will denote the equilibrium 
solution of this system as x* = T**

2
*
1 ],...,,[ Nxxx . Note that unlike (II.2), the first term is not 

divided by the number of all pages N or |V|. We will come back to this interesting point a little 
later. 
 
Dynamical system 
A linear system can normally be solved algebraically using Gaussian elimination. However, 
this would require O(N3) floating-point operations, which is absolutely unfeasible with regard 
to the number of pages in the Web (billions). Therefore, the system must be transformed into 
a corresponding dynamical system and solved numerically: 
 

x(t) = (1 – d)eN + dTx(t – 1) (II.4) 
 
where x(t) is the PageRank vector at time step t. It can be proven [Bianchini2005] that this 
dynamical system is stable (i.e. it converges), and that the sequence x(1), x(2), x(3)… 
converges to the solution of the linear system in (II.3) independently of the non-zero initial 
vector x(0) if d < 1. This can be fixed very simply by adhering to the recommendations of 
PageRank’s inventors and setting d on 0.85. We will discuss the impact of d on PageRank 
computation further below. But there is also a problem when we want to make (II.4) coherent 
with the Markov process model (see Section II.2.3), which was the original framework for 
PageRank. In this probabilistic model, the total sum of PageRanks over all nodes must be 
equal to one at any time. For the system (II.4) to converge, T must be stochastic (i.e. non-
negative with all columns summing up to one) . What about this condition? Is it easy to figure 
this out? 
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Removing dangling pages 
When we have a look at Figure II.3, we can see immediately that T is not stochastic. Using it 
directly in (II.4) and forcing ||x(t)||1 = 1 for t ≥ 0 would not yield a fixed-point distribution of 
PageRanks over the graph. The sequence {x(t)} would not converge. There are three columns 
in T not summing up to one the source of which are the dangling pages 3, 4, and 7 in the 
graph. Dangling pages (originally called dangling links by Brin and Page to refer to pages the 
links to which have been encountered by the Web crawler but that have not yet been crawled 
themselves) have no out-links and hence the columns in T that sum up to null. In fact, there 
are very many pages without out-links in the Web, and (II.4) could be directly applied only to 
some selected portions of the Web such as the SCC component in Figure I.2. 
 
There are two main theoretic approaches (see [Berkhin2005] for others) how to deal with 
dangling pages. Both of them are depicted  in Figure II.4. The first is to add a dummy page 
with a self-link to the graph and let all dangling pages point to it. Thus the dimensions of the 
adjacency and transition matrices A1 and T1 increase by one as well as the PageRank vector x1 
= [x1, x2, …, xN, xN+1]

T.  We must then replace T, x, and eN in (II.4) with T1, x1, and eN+1: 
 

x1(t) = (1 – d)eN+1 + dT1x1(t – 1). (II.5) 
 
In the second approach, we make dangling pages link to all pages in the graph including 
themselves like in Figure II.4 bottom. All dimensions remain intact, and the linear system 
(II.3) changes into: 
 

222

1
xTex d

d +−= NN
. (II.6) 

 
Normalization 
Bianchini et al. prove that equations (II.3) through (II.6) describe related systems, and that the 
ranking scheme provided by those four systems is the same. Moreover, if *

2x  is the stationary 
solution of (II.6), they show that it holds that this normalized PageRank can be obtained by 
normalizing the “unnormalized” PageRank x*: 
 

1|||| ***
2 xxx = . (II.7) 

 
Thus, 1(|||||| 1 == 12

*
2 ||)txx  for t ≥ 0 provided that ||x2(0)||1 = 1. On the other hand, the 

stationary PageRank vector *1x  derived from (II.5) is not normalized, and its relation to x* is 
the following: 
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d
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where R = [r1,…,rN], and r i = 1 if i is a dangling page in the original graph G and r i = 0 
otherwise. In fact, R is the last row in T1 without the last element. For instance, R = 
[0,0,1,1,0,0,1,0,0] in Figure II.4. 
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1

5

7

4

6

2

3

9

8
10

  0  0 0 0 1/3   0  0 0   0  0
1/2 0 0 0   0    0  0 0   0  0
  0  1 0 0   0    0  0 0 1/2 0
1/2 0 0 0 1/3   0  0 0   0  0
  0  0 0 0   0  1/2 0 0   0  0
  0  0 0 0   0    0  0 0   0  0
  0  0 0 0 1/3 1/2 0 1   0  0
  0  0 0 0   0    0  0 0 1/2 0
  0  0 0 0   0    0  0 0   0  0
  0  0 1 1   0    0  1 0   0  1

0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1

A1 T1G1 = (V1, E1)

1

5

7

4

6

2

3

9

8

G2 = (V2, E2)

  0  0 1/9 1/9 1/3   0  0 0   0
1/2 0 1/9 1/9   0    0  0 0   0
  0  1 1/9 1/9   0    0  0 0 1/2
1/2 0 1/9 1/9 1/3   0  0 0   0
  0  0 1/9 1/9   0  1/2 0 0   0
  0  0 1/9 1/9   0    0  0 0   0
  0  0 1/9 1/9 1/3 1/2 0 1   0
  0  0 1/9 1/9   0    0  0 0 1/2
  0  0 1/9 1/9   0    0  0 0   0

0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0

A2 T2  
 

Figure II.4: Two ways of tackling dangling pages. 

 
Now we can see that the division by N is not necessary in (II.3) provided we content ourselves 
with unnormalized PageRanks. Actually, the L1-norm of the fixed point is always bounded by 
the number of all pages N: 
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where S is a set of dangling pages. Therefore, the total unnormalized PageRank ||x* ||1 in a 
graph without dangling pages is N, and any nodes with no out-links cause a loss of energy. 
 
If we would like to have ||x* ||1 = ||x(t)||1 for t ≥ 0 in order to have a stochastic system 
conforming to the random walk framework (see Section II.2.3), the transition matrix must be 
stochastic as well, i.e. it must be non-negative and have all columns summing up to one. 
Because T is not stochastic in general due to dangling pages and the system (II.4) would 
therefore not converge, we need to take advantage of T1 or T2 and the appropriate equations 
(II.5) or (II.6). Equation (II.5) resulting in a PageRank vector that should yet be normalized is 
preferred by [Bianchini2005]; (II.6) was originally used by PageRank’s inventors [Page1999]. 
An alternative, practical approach is to preprocess the Web graph by iteratively removing 
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dangling pages, computing PageRank on the stochastic transition matrix, and then distributing 
the scores to previously removed nodes [Chakrabarti2002, p. 211]. This process is criticized 
by [Langville2003] for not being fair, but it is embedded in the iterative calculation outlined 
in Section II.2.1. 
 
Eigensystem 
Theoretically, if the Web graph had no dangling pages, no rank sinks and was strongly 
connected (the transition matrix is then stochastic and said to be primitive), we could drop the 
factors d and (1 – d) from (II.3) and could directly solve the system x = Tx whose stationary 
solution is the principal eigenvector of T [Chakrabarti2002, p. 210].  See also Sections II.3.1 
and III.2.2 for a similar concept. A survey of eigenvector ranking methods for the Web is 
available in [Langville2005]. 

II.2.3 Random Walk Guise 
Diligenti [Diligenti2004] distinguishes horizontal and vertical ranking methods. Horizontal 
rankings are only based on the Web graph topology and do not take into account the contents 
of Web pages. PageRank and HITS (see Section II.3) are both horizontal. Vertical (focused) 
rankings classifying Web documents are useful for topic search. Diligenti's probabilistic 
framework is based on random walks in that the relevance (rank) xp of a page p is computed 
as the probability of visiting that page in a random walk on the Web graph. The most popular 
pages (i.e. most often cited) are the most likely to be visited during a random walk. 
 
Random walk 
A random walk in the context of Web browsing is a mathematical model of actions taken by a 
generic Web surfer. At each step of the walk, the surfer can perform one of the following 
actions: jump to any Web page (action j), follow a link to another page (action l), follow a 
backlink from the current page (action b), stay where he or she is (action s). Thus, the set of 
atomic actions is Ο = { j, l, b, s}. At each step, the behaviour of the surfer depends on the 
current page. If he finds it interesting, he will probably click on a link there. If he finds it 
boring, he types another URL in the address bar of his Web browser. So the surfer's behaviour 
can be modelled by a set of conditional probabilities depending on the current page q: 
 

• x(p|q, l): probability of following a link from page q to page p 
• x(p|q, b): probability of following a backlink from q to p 
• x(p|q, j): probability of jumping from q to p 
• x(s|q): probability of staying on q 

 
If G = (V, E) is a Web graph defined as earlier and p and q are Web pages (p,q ∈ V ) then the 
following constraints have to be satisfied for each page q: 
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Evidently, the first constraint in (II.10) includes the case of remaining on the page because p 
can be the same as q. The probabilistic random walk model can be made use of to compute 
the probability xp(t) – that the surfer is located on page p in time t. The probability distribution 
on all pages is represented by the vector x(t) = [x1(t),…,xN(t)]′ where N is the total number of 
pages. The probabilities xp(t) are updated in each step of the random walk according to the 
following formula: 
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(II.11) 

 
where the probability x(p|q) of moving from page q to page p is expanded considering the 
user’s actions. The probabilities x(j|q), x(l|q), and x(b|q) are general probabilities of jumping 
to a random page from page q, following a link from q, and following a backlink from q, 
respectively, without specifying a target page.  
 
Now we will move to a matrix notation. The probabilities defining the random surfer model 
may be organized in a couple of N × N matrices: 
 

• forward matrix ∆∆∆∆ whose element (p,q) is the probability x(p|q,l) 
• backward matrix ΓΓΓΓ of the probabilities x(p|q,b) 
• jump matrix ΣΣΣΣ gathering the probabilities x(p|q,j) 

 
We can also define a set of action matrices that inform about the probabilities of the 
individual actions taken on each page q. These matrices are N × N diagonal matrices having 
x(j|q), x(l|q), x(b|q) and x(s|q) as their diagonal values (q,q). We will denote those matrices Dj, 
Dl, Db and Ds, respectively. We can then restate (II.11) as 
 

x(t + 1) = (ΣΣΣΣ ⋅ Dj)
Tx(t) + (∆∆∆∆ ⋅ Dl)

Tx(t) + (ΓΓΓΓ ⋅ Db)
Tx(t) + (Ds)

Tx(t). (II.12) 
 
By defining the transition matrix as 
 

T = (ΣΣΣΣ ⋅ Dj + ∆∆∆∆ ⋅ Dl + ΓΓΓΓ ⋅ Db + Ds)
T 

 
we can write (II.12) in the following way: 
 

x(t + 1) = T ⋅ x(t). (II.13) 
 
From the initial distribution of probabilities x(0) we can compute a distribution in any time 
step t: 
 

x(t) = Tt ⋅ x(0). (II.14) 
 
Equation (II.14) describes a Markov chain whose state transition matrix is TT. The final rank 
of all pages in the graph is the stationary distribution x(∞) of this chain. Diligenti further 
shows that on some conditions there must exist such a distribution and that it is independent 
of the initial vector x(0). 
 
PageRank calculation based on a random walk 
The single-surfer model may be extended to a multisurfer walk in which the things become 
slightly more complicated. In this model there are several surfers influencing one another. But 
we are more interested in how the PageRank calculation fits into the probabilistic single-
surfer random walk framework. 
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PageRank is a special case of the single-surfer random walk in that it considers only two basic 
actions: jumping to a random page from the current page q with probability x(j|q) = 1 – d and 
following a link from the page q with probability x(l|q) = d (d may be chosen arbitrarily 
between 0 and 1 with the effect on convergence speed explained in II.2.4). The other two 
probabilities known from the general model (x(b|q) and x(s|q)) are null. Obviously, all the 
probabilities are independent of the current page q. The target page p of a jump is selected 
uniformly from all the N pages in the graph G, thus .,/1)|( GpNjpx ∈∀=  The probability of 

following a link from page q to page p is x(p|q,l) = αq where αq = 1/hq and hq is the hubness 
of page q, i.e. the number of links pointing from q elsewhere (out-degree). Therefore, we can 
rewrite (II.11) as 
 

∑ ∑∑
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∈Eq
q tx  

 
The fact that 0 < d < 1 implying x(j|q) = 1 – d > 0 guarantees that the PageRank vector 
converges to a distribution of scores independent of the initial distribution. Again, using a 
matrix notation, the computation of PageRank looks like this: 
 

)(
1

)1( td
N

d
txp ZxAE T+−=+  (II.16) 

 
where E is the N × N identity matrix, A is the adjacency matrix of the Web graph defined as 
before (i.e. an element Apq = 1 if there is a link from p to q and it is zero otherwise), and Z is a 
diagonal matrix whose element Zqq = αq.  
 
There is a little problem with sink pages (we call them dangling pages in Section II.2.2) 
whose hubness is zero (i.e. ch(q) = ∅) and therefore we cannot compute the term 1/hq. 
Instead, it should be x(l|q) = 0 resulting in x(j|q) = 1 for any sink page q. So the PageRank 
equation must be modified in that x(j|q) = 1 – d if ch(q) ≠ ∅ and x(j|q) = 1 if ch(q) = ∅. Then 

the first term in (II.15) will not be constant but the probability ∑
∈

=
Gq

q txqjx
N

tjpx )()|(
1

),|(  

(jumping to p in time step t) needs to be computed at the beginning of each iteration. 
 
Conclusions 
Diligenti also presents HITS (another well-known ranking algorithm described in 
Section II.3) in terms of a multisurfer random walk notation (see Section II.3.1 for the 
eigenvector interpretation) and compares HITS with PageRank: Computation of PageRank is 
stable (see Section II.2.6) and it can be applied to large document collections because small 
communities are not overwhelmed by large ones. On the other hand, PageRank does not take 
into account complex relationships of Web page citations. HITS is not stable, only the largest 
community influences the ranking but HITS understands better relations among pages. As a 
result, [Diligenti2004] proposes a hybrid model called PageRank-HITS, which combines both 
of the algorithms. 
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Diligenti’s probabilistic framework is also well suited for vertical ranking systems, which 
consider the contents of Web pages as well as the Web graph topology when assigning scores. 
Each page is represented by a set of keywords and it gets a relevance value by a classifier 
respecting the topic of interest. For instance, the page www.google.com is highly ranked by a 
general PageRank, but it would be little ranked by a PageRank focused on the data mining 
topic. From a couple of focused ranking algorithms “double focused PageRank” turned out to 
be the best.  

II.2.4 Convergence Rate and the Effect of Factor d 
The method represented by the dynamical system in (II.4) is the iterative Jacobi algorithm, 
which requires O(m|E|) floating point operations. |E| is the number of links in the Web graph, 
and m is the number of iterations. Bianchini and her colleagues show that m depends only on 
d and  the relative error ε. In other words, the number of iterations in the system (II.4) needed 
to achieve a relatively stable vector of PageRanks depends neither on the size of the Web nor 
on its connectivity. They define the relative error at each time step as ||erel(t)||1 = ||x* - x(t)||1 / 
||x* ||1, and prove mathematically that in order to get the relative error under a certain threshold 
ε, it must be true that 
 

d

d
t

log

))1log(( ε−≥  (II.17) 

 
Number of steps 
Thus, for d = 0.85 and ε = 10-7, we get t ≥ 111. That means, we need to iterate at least 111 
times (i.e. m above will be 111) to get the error under the threshold. Changing d to 0.3 
accelerates the computation to about 14 iterations whereas setting it on 0.99 yields 2 062 
iterations! Now, when we make ε smaller, ε = 10-15,  t (and m) will have to be 3 895. 
Evidently a small ε slows down convergence, which is natural, but a small d speeds it up. The 
reported number of about fifty iterations by Brin and Page for their graph with 322 million 
nodes (see Section II.2.1) suggests that the authors contented themselves with ε = 10-3. Let us 
recall that the number would have been the same if they had had a graph with just a million 
nodes. Apparently, the number of flops still relates to the number of edges in the graph, and, 
with regard to the immense size of the current Web, m greater than approximately one 
hundred would probably not be desirable even by top commercial search engines having 
enormous computing capacities.  
 
So why not to set d very low if it speeds up convergence? In fact, d = 0.85, has been carefully 
chosen, and it is rarely set outside of the interval (0.8; 0.9). The fact is that the lower is d the 
less is respected the true link structure of the Web, because the term (1 – d) represents the 
random jump of a Web surfer (see Section II.2.3). It is in accordance with intuition as well as 
with empirical observations that a random jump represents about one sixth of all transitions 
between Web pages.  Thus, a low d overemphasizes random transitions between Web pages at 
the expense of existing links between them. What follows naturally is that different d’s 
produce distinct rankings. Two orderings of Web pages may differ substantially. Also for this 
reason, the convergence criterion in practical applications is not the relative error of rank 
scores or a difference between two subsequent rank vectors, but the iterative process stops as 
soon as the ordering of pages does not change (much).  Two subsequent orderings may be 
compared by means of some well-known metrics such as Kendall’s tau or Spearman 
correlation coefficient. 
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Boundary values 
What about the boundary values of d? If we set d = 0, all unnormalized PageRanks are equal 
to one. On the other hand, if d = 1 then (II.4) may not converge. Moreover Bianchini et al. 
show that when d → 1, some nodes gain advantage over others, and the distribution of 
PageRank is biased towards them. They call these nodes essential nodes and we can 
recognize that a rank sink like that in Figure II.2 is always composed of one or more essential 
nodes. There is now way of escape from a rank sink except for a random jump outside of the 
loop of essential nodes. On the other hand, the stationary PageRank score *px  of any node p 

that is outside of rank sinks (an inessential node) is zero when d ≈ 1. Thus, setting d higher or 
lower,  we can also regulate how much rank we wish to confer to nodes in rank sinks. But d 
set to zero or one should be avoided, because the ranking scheme does not work anymore 
then. 

II.2.5 PageRank for Publications 
Although PageRank was originally conceived to help search engines rank Web pages by 
importance, it was clear that it could be applied to any graph-like structure, not only the Web 
graph. An evident application field is the network of bibliographic citations. We devote an 
entire Chapter III to the study of various social and information networks that invite the usage 
of PageRank-like methods. In this section, we will deal with the research carried out in 
[Sidiropoulos2005] that inspired our work described in Chapter V. The extent to which our 
work is different from the following is clarified in Section V.4. 
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Figure II.5: Examples of graphs where standard PR does not work well [Sidiropoulos2005]. 

 
PageRank’s drawbacks 
Sidiropoulos and Manolopoulos are concerned with citation networks of scientific 
publications and find out that the standard PageRank metric is not appropriate for 
bibliographic measurements in some cases.  More specifically, they show that in situations 
such as those depicted in Figure II.5 a modification of PageRank would be desirable. For 
example, in case a), nodes 10 and 6 are ranked higher than 0, because they are part of cycles. 
(In terms of the terminology we have learned in the previous sections, we would say that they 
are part of rank sinks or that they are essential.) However, in a graph where nodes are 
publications and edges are citations between them, a cycle is a kind of self-citation. Therefore, 
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we would rather node loops not to have much influence on rank distribution. Similarly, in 
case b), node 0 is ranked higher by PageRank than node 1 even though 1 has more “direct” 
citations which would be perceived as having more  weight in bibliometrics. In the last 
examples c) and d), an additional node 8 points to 6, and this results  in an increase of over 
7% of PageRank of node 5. So even quite a distant change in the citation graph has some non-
negligible influence on a particular node. Thus, the motivation for the following formula is to 
give more weight to direct citations and to make their impact smaller as the distance between 
the citing and the cited node gets larger: 
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SCEAS Rank 
In the above formula, R(u) is the rank score computed for node u (called SCEAS Rank) b is a 
factor enforcing direct citations, and a represents the speed with which an indirect citation 
impact converges to zero. Then the rank score of a cited node u is affected by a citing node v 
by the factor  of a-k when k other nodes lie between them. If b is zero and a is one, equation 
(II.18) is equivalent to the standard PageRank (II.2) except for the first term divided by the 
number of nodes which we explained earlier. If a ≥ 1 and b > 0 then one may even set d = 1 
without convergence to zero unlike PageRank. Rankings produced by PageRank and SCEAS 
Rank for the graphs in Figure II.5 for d = 1, b = 1, and a = e (2.72) are shown in Table II.1. 
As e-7 is almost zero, a node citing from a distance of  7 and more has almost no impact on the 
cited node. 
 

a) b) c) d) 
PR SCEAS PR SCEAS PR SCEAS PR SCEAS 

6 0 0 1 5 5 5 5 
13 6 1 0 3 3 3 6 
10 10 2 2 2 2 2 0 
9 13 3 3 1 1 1 1 
5 9 4 4 4 0 0 2 
0 5 5 5 0 6 4 3 
1 1 6 6 6 4 6 4 
2 2 7 7 7 7 7 7 
3 3     8 8 
4 4       
7 7       
8 8       

11 11       
12 12       

 

Table II.1: PageRank and SCEAS rankings for Figure II.5. 

 
Authors of SCEAS experimentally prove that it converges twice as fast as PageRank. 
Moreover, they conduct a series of experiments with data from the DBLP digital library (see 
Section IV.1) and compare SCEAS rankings with several other ranking schemes including 
PageRank, HITS and a “baseline” ranking constituted of authors winning an ACM award. 
They show that their method is superior to the others. We adopted their comparison 
methodology to test our novel algorithm on real data in Chapter V.  
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II.2.6 Current Issues, Trends, and Areas of Future Research 
Ranking algorithms have attracted much attention because of their evident practical usability, 
and the steady stream of new ideas, observations, modifications, and improvements does not 
seem to fade out. In spite of this, the theoretical properties of PageRank are still “only 
partially understood” [Bianchini2005]. The following topics appear to be the main research 
areas in this domain at present and will probably remain in the scientific mainstream in the 
next decade. We refer to some of the available literature only, please see [Langville2003] for 
further references. 
 

• Storage. The vast dimensions of the Web transition matrix make its storage in main 
memory impossible. There are two principal approaches how to tackle this problem. 
First, we can compress the transition matrix, which is normally very sparse, store it in 
main memory, and then modify the iterative (also called power) method in (II.3) so 
that it could work with the compressed matrix. Second, we can store the transition 
matrix on disk in an efficient manner and then find out methods that allow for a 
timesaving access to this matrix. The aim is to minimize the time needed for I/O 
operations.  

 
• Convergence speed. Although the number of steps required for the power iterations 

method to converge is not more than a hundred whatever the size of the Web graph 
(see Section II.2.4), the number of floating point operations involved in that 
computation may be enormous. Therefore, much research effort is devoted to finding 
out techniques aiming at speeding up the calculation. Basically, one can either try to 
reduce the number of iterations (mostly by tinkering with computation parameters or 
by relaxing the convergence criterion) or to reduce the number of operations in an 
iteration. 

 
• Stability and sensitivity. There have been some contradictory research reports 

concerning the scale of change in the PageRank vector when the Web structure varies. 
Some authors [Ng2001a, Ng2001b] claim that PageRank ranking is stable and that it is 
not much affected by many poorly ranked pages that are modified. Nevertheless, some 
other researchers argue that it is mainly highly ranked pages which alter mostly and 
these modifications do have a great impact on the overall ranking. Finally, there are 
scientists who point out that rank stability should be observed rather than numerical 
stability.   

 
• Incremental computation. The frequency of updating PageRank of Web pages 

should be high enough so as to reflect the dynamic nature of the Web. It is conforming 
to the time period between two consecutive crawls of the Web (see Section I.2), which 
amounts to weeks. The high computational costs of PageRank motivated endeavours 
to calculate it incrementally as the spider crawls the Web without needing to start over 
from scratch every time after a complete crawl [Desikan2005, Boldi2004a]. 
Alternatively, only the part of the Web that has changed since the previous crawl can 
be re-computed and then coherently incorporated in the overall ranking. Some 
techniques aim at “predicting” the Web structure [Yang2005]. 

 
• Spamming. There are estimates of millions of pages in the Web that have been 

created only for the purpose of  search engine spamming. It means that they try to 
promote other pages or groups of pages in search engine rankings by linking to them. 
In other words, their goal is to unfairly increase the PageRank score of particular 
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pages. These unfair linkage patterns can be very complex and difficult to discover. 
Therefore, sophisticated algorithms [e.g. Wu2005] must be developed to help search 
engine ranking schemes (based on PageRank) evaluate Web pages fairly. An on-going 
clash of both parties – search engines vs. spammers – is to be expected in the years to 
come. 

II.3 HITS 
Web structure mining, one domain of Web mining, is concerned with exploring the topology 
of Web sites. The term topology is borrowed from graph theory and it means the structure of 
Web graph, in which the nodes are Web pages and the arcs are links pointing from one page 
to another. Obviously, it is a directed graph. Soon it was discovered that this structure could 
bear some information no less important than the actual contents of Web pages. For instance, 
researchers have noticed that Web pages can generally be divided into two categories: pages 
that link to many other pages and pages that are pointed to by many other pages. In fact, this 
behaviour resembles the human society when we think of Web pages as humans. 

II.3.1 Authorities and Hubs 
Gibson, Kleinberg and others [Gibson1998, Kleinberg1999b, Chakrabarti1998] explored the 
existence of Web communities. In doing so they introduced the notions of authorities and 
hubs and they developed a technique called HITS (Hyperlink-Induced Topic Search), which 
is based on them. The authors conducted a number of experiments with HITS or methods 
derived from HITS  and they took a surprising conclusion that was in contrast to the common 
opinion that the World Wide Web was “becoming increasingly chaotic”. A hub links to many 
pages, whereas an authority is linked to from many pages. Between these two entities there is 
a mutually reinforcing relationship – a good authority is linked to from many good hubs and a 
good hub links to many good authorities. A Web page can be a hub and authority at the same 
time. The following Figure II.6 shows an example of a Web community. The set S includes 
pages obtained with a query to a Web search engine, the extended set T contains, in addition, 
all the pages linking to the pages in the set S and all the pages that are linked to from the 
pages in the set S. The size of the set S is limited by choosing only a certain number of results 
from the search engine. We will denote such a graph as G = (T, E) with E being the set of 
links as usual. 
 

set T
set S

 
 

Figure II.6: Example of a Web community. 
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If we assign an authority weight a(p) and a hub weight h(p) to each page p, their values are 
computed as a sum of hub weights of the pages that link to it and as a sum of authority 
weights of the pages it links to, respectively. See equations (II.19) and (II.20). 
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At the beginning, we initialize the values of all a(p) and h(p) to 1. We update them according 
to the formulae (II.19) and (II.20) in each iteration. We proceed like this with all the pages 
and we normalize the weights after each iteration. The authors prove that this iterative process 
converges to stable sets of weights of authorities and hubs. Then say ten greatest authorities 
and ten greatest hubs can be denoted as the core of a community. 

 
Previous thoughts can be expressed in the matrix notation. Again, let A be the adjacency 
matrix of a directed Web graph (similar to that in Figure II.6), where Aij = 1 when the page i 
links to page j and 0 otherwise. Let h and a be vectors corresponding to the weights of hubs 
and authorities of all pages. We will repeatedly perform the following operations: 
 
 h ← A a, a ← AT h. (II.21) 
 
From the classical matrix theory it implies that with an appropriate renormalization h 
(respectively a) converges to the principal eigenvector AAT (respectively ATA). Kleinberg 
shows further that the non-principal eigenvectors of these matrices correspond to the 
authorities and hubs of the “non-principal” Web communities. 

II.3.2 Extended Authorities and Hubs 
We can also apply the idea of hubs and authorities to graphs with other kinds of nodes. In the 
previous case, each node is a Web page, but it could be a researcher, a research group or an 
institution as well. If a node is a researcher, the edges coming to this node are citations of this 
scientist (strictly said citations of his/her publications) made by other researchers (in their 
publications). On the other hand, the edges pointing from this node to the others are citations 
to other researchers. Of course, we might group researchers according to co-authorship, 
membership to institutions and so on. So the citations here are not meant to be references 
(links) from Web pages but directly from papers (publications). In the case of Web citations 
the cited entity can be easily recognized by its URL. It is more complicated with paper 
citations – it is necessary to find the references section in the paper, to retrieve the individual 
citations in it and possibly to determine the cited object. Here we must work with a certain 
ambiguity, because not all citations have the same format, not all authors are stated with their 
second given names and so on. See Chapter III for the concept of authorities in social 
networks and Chapter VI for case studies of finding authoritative institutions and researchers 
on the Web.  

II.4 Summary 
The idea of taking into account the link structure of the Web in order to rank pages by 
importance was a revolutionary step towards a unified view on methods seeking to detect 
authoritative sources in networked environments. An entirely new class of algorithms was 
born – ranking algorithms. Even though the first application area was the Web, these 
algorithms are suitable for any directed graphs. In this chapter, we concentrated mainly on the 
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best-known representative of ranking methods, PageRank, which is at the heart of the Google 
search engine. Although the most recent version of PageRank and its exact usage in 
combination with other techniques in Google is highly proprietary information, we attempted 
to summarize the state-of-the-art knowledge of this ranking method as understood in 
academia. 
 
The contents of this chapter are based primarily on the original PageRank articles [Brin1998, 
Page1999], survey articles [Bianchini2005, Langville2003, Berkhin2005], the corresponding 
chapter in [Chakrabarti2002, pp. 209-216], and several research papers [Diligenti2004, 
Ding2001b, etc.]. We had to leave out those many modifications of PageRank due to space 
limitations such as SALSA [Lempel2000] – a stochastic method on the boundary between 
PageRank and HITS, TruRank [Vigna2005], which works also for d ≈ 1, BackRank 
[Bouklit2005], which allows a random surfer to follow a backlink, or ObjectRank 
[Balmin2004], which is query dependant unlike PageRank. We just sketched out the features 
of SCEAS Rank [Sidiropoulos2005, Sidiropoulos2006] that was most relevant to our work, 
and for information on AuthorRank, another PageRank-based technique close to our research 
[Liu2005, Bollen2006], we refer to sections III.4.2 and V.4. As a final remark we would like 
to underline that some aspects related to ranking algorithms are also discussed in the context 
of social networks in Chapter III. 
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III Social Networks 

The Web graph, about which we talk in Chapter I, is a network of pages connected via 
hyperlinks. Actually, every system that can be modeled as a graph is a network. The two 
expressions are synonymous, although mathematicians prefer speaking of graphs rather than 
networks, which is the terminology of social scientists. Wasserman and Faust 
[Wasserman1994] review social networks in detail and a very comprehensive overview of 
networked systems has been written by Newman [Newman2003]. Newman groups real world 
networks into social, information, technological, and biological networks. He considers 
citation networks and the World Wide Web (the structures we are interested in) as 
information networks, although the term “social” has been widely accepted and is often used 
in the context of citations or WWW, e.g. in [Chakrabarti2002, ch. 7] or [Liu2005]. 
 
The terms, algorithms, analyses, and models we discuss in the context of the Web are the 
results of mixing mathematical and social science approaches. If some decades ago social 
network models and theories were introduced which later had impact on the analysis of the 
Web (for instance bibliometric methods described in [Garfield1979] or [White1989]), now 
there are algorithms that have evolved in the Web environment and that, having been enriched 
with ingredients from the mathematical graph theory and numerical analysis, may be applied 
to original social networks again. Thus, webometrics influences bibliometrics. This is the case 
of ranking techniques covered in detail in Chapter II.    

III.1 References and Citations 
To avoid confusion between references and citations (which is sometimes the case even in the 
most accurate publications), we will strictly consider out-edges as references and in-edges as 
citations. Thus, articles (or authors) refer to other articles (authors) that are cited by them. A 
citation by X is an out-edge from X; a reference to X is an in-edge to X. A citation of Y by X 
is the same as a reference to Y from X meaning an edge from X to Y. So in the most strict 
sense, we should always use “refer” in the active form and “cite” in the passive form. Thus, 
the common phrase “author X cites author Y” would read only as “author X refers to author Y” 
or “author Y is cited by author X” in the most exact interpretation. However, the phrase “X 
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cites Y” in the sense of an edge from X to Y is so common in literaure that it is practically 
inevitable. Therefore, when appropriate we always indicate whether a relationship is an in-
edge or out-edge throughout this thesis. 
 
Definitions 
We can gain valuable information from social networks when we have a look at co-citations 
and co-references. Let us recall what Ding et al. [Ding2001a, Ding2001b, Ding2002] say 
about them. Let G = (V, E) be a directed graph of citations (set E) between publications (set 
V). Each edge (pi, pj) means that publication pi cites publication pj. Let A be the assymetric N 
× N adjacency matrix of such a citation network where N is the number of publications |V|, Aij 
= 1 if pi cites pj and Aij = 0 in other cases. The number of citations (or in-degree) of pj is the 

sum of values in the j-th column of A, i.e. ∑ =
= N

i ijjin Apd
1

)( and the number of references (or 

out-degree) from pi is the sum of values in the i-th row of A, i.e. ∑ =
= N

j ijiout Apd
1

)( . Let din = 

[din(p1), din(p2),…,din(pn)]
T be the vector of in-degrees of publications in V, dout = [dout(p1), 

dout(p2),…,dout(pn)]
T be the vector of out-degrees, and Din = diag(din) and Dout = diag(dout) be 

the corresponding diagonal matrices. The number of all interactions between publications is 

equal to the sum of all elements in A: ∑ ∑= =
= N

i

N
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Co-citations 
If publication p1 references both p2 and p3 then p2 and p3 are co-cited by p1. On the other hand, 
if both p1 and p2 reference p3 then p1 and p2 co-reference p3. See Figure III.1 for examples. Let 
us define the co-citation index Cij of publications pi and pj as the number of other publications 

citing both pi and pj: ∑ =
≠== N

k ij
T

kjkiij jiAAAAC
1

,)( or by means of set notation 

|}),(,),(:{| EppEppVpC juiuuij ∈∈∈= . The whole symmetric co-citation matrix will be 

denoted as C. Although Cii is not meaningful and is usually set to zero, 
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1 1
)()( d  is the in-degree of pk. Thus, diag(ATA) = Din. 

This results in an interesting relationship. The so-called authority matrix is a sum of the co-
citation and in-degree matrices: 
 

C+= in
T DAA . (III.1) 

 
The authority matrix ATA is the base for computing HITS authorities (compare with Section 
II.3.1) and it is surprising to see how close the authorities are to co-citations and in-degrees. 
Apparently, the higher the co-citation index, the more related are the co-cited publications. In 
fact, the co-citation index may be considered as a measure of similarity of two items 
[Small1973], and it can be utilized to cluster objects linking to each other such as publications 
[McCain1992], authors [Chen1999], or Web pages [Larson1996]. 
 
Co-references 
It works similarly in the opposite direction of the citation. Two publications co-referencing 
some others (such as p1 and p2 on the right-hand side of Figure III.1) are likely to deal with 
the same topic. In bibliometrics, a co-reference is often referred to as bibliograhic coupling 
[Kessler1963]. The higher the number of co-referenced papers (co-reference index), the closer 
are the citing publications to one another. Let R be the co-reference matrix of papers in V. 

Then, the co-reference index Rij of papers pi and pj is  ∑ =
≠== N

k ij
T

jkikij jiAAAAR
1

,)(  or, 
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with set notation, |}),(,),(:{| EppEppVpR vjvivij ∈∈∈= . Again, Rii is set to zero, but 

∑ ∑= =
=== N

k

N

k ioutikikikii
T pAAAAA

1 1
)()( d  is the out-degree of pi. Thus, diag(AAT) = Dout, 

and we can express the hub matrix AAT as the sum of co-reference and out-degree matrices: 
 

R+= out
T DAA . (III.2) 
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Figure III.1: p2 and p3 are co-cited by p1 (left) and p1 and p2 co-reference p3 (right). 

 
Normalization 
Ding [Ding2001a] further proves that the average co-citation index of pi and pj is                  
Cij = din(i)din(j)/(N – 1), and the average co-reference index is Rij = dout(i)dout(j)/(N – 1) if the 
social network forms a fixed degree sequence random graph [Aiello2000]. (Compare with the 
Web graph model in Section I.1.) He also points out that both co-citation and co-reference 
indices should be normalized. We can explain this normalization looking at Figure III.2. 
Papers p6 and p7 (left) are co-cited by p3, p4, and p6, but the co-citation by p4 should weight 
less because p1 and p2 are also co-cited by p4 in addition to p6 and p7. Actually, there are four 
out-links from p4 and only two of them make the co-citation of p6 and p7. Thus, the co-citation 
by p4 is 50% less valuable than that by p3 or p5 which have only two out-links each. This is 
called the normalization by out-links for co-citations, and it will be the normalization by in-
links for co-references. Papers p1 and p2 (right) co-reference p3, p4, and p5, but there are also 
p6 and p7 that co-reference p4. Therefore, the contribution of p4 to the co-reference index for 
p1 and p2 will be a half of the contribution made by p3 or p5. 
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Figure III.2: Examples of co-citation and co-reference. 
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III.2 Popularity and Prestige 

III.2.1 Popularity  
Bollen et al. [Bollen2006] make a distinction between popularity and prestige when he 
discuss the significance of scientific journals. Before returning to this topic a little later, we 
incorporate these two terms into general social networks. In a social network like that in 
Section III.1, the popularity of a node p is clearly identified as the number of citations (in-
links) or in-degree. Citations and in-degrees may sometimes not be the same quantitites (like 
in the author citation graph in Chapter V), and citations may then be considered as weights in 
an edge-weighted citation graph. To demonstrate the difference between in-degree and 
citations, we have to extend the graph G = (V, E) from Section III.1 and associate weights 
with its edges. Let wij be the value assigned to edge (i,j)∈E. The popularity of node u is then 
 

∑
∈

=
Euv

vuwu
),(

)(P . (III.3) 

 
Weighted and unweighted in-degrees 
Obviously, if we set all weights w to one, the popularity of a node is its in-degree. If not all of 
the edges have a weight of one, the popularity is a weighted in-degree. Thus, counting 
citations for a particular author in a citation graph of authors, in which the weight wij means 
that author j is cited w-times by author i, is like calculating the weighed in-degree of that 
author. In Chapter V, we use “counting citations” and “calculating the weighted in-degree” 
synonymously. What is the relationship between the “normal” (unweighted) and weighted in-
degree (citations)? Let us denote the weighted in-degree of node u as Pw(u) and its 
unweighted in-degree as Pu(u). If we suppose that wij is always greater or equal to one (as it 
should be in citation networks) then Pw(u) ≥ Pu(u). Consider the cases in Figure III.3. 
 

1 1111 5

u v

1 53

x

1

y  
 

Figure III.3: Citations and in-degrees. 
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The weighted in-degrees of u and v are the same (Pw(u) = Pw(v) = 5) whereas the unweighted 
in-degrees are different (Pu(u) = 5, but Pu(v) = 1). We intuitively judge that u is more popular. 
On the other hand, nodes v and y have the same unweighted in-degree (1), but distinct 
weighted in-degrees (5 and 1). We will consider v as more popular, although we may be more 
reluctant here that in the previous case, because we associate the notion of poularity with the 
number of endorsing elements rather than with the strength of endorsment. The node x is 
more popular than both v and y in each aspect.  
 
Until now, we could always decide upon popularity – the weighted and/or the unweighted in-
degree was higher. But what if we are to compare more than two elements or if the in-degrees 
do not allow us to decide? For instance, the in-degrees of u and x are the following: Pw(u) = 5, 
Pw(x) = 9, Pu(u) = 5, and Pu(x) = 3. Can we normalize the in-degrees somehow? A short 
investigation shows us that we cannot. If we normalize citations by in-degree (i.e. Pw/Pu), we 
get 1 for u, 5 for v, 3 for x, and 1 for y. In case that we normalize in-degree by citations (i.e. 
Pu/Pw), we obtain 1 for u, 0.2 for v, 0.33 for x, and 1 for y. Among the many discrepancies we 
get, let us name just one. The “normalized” in-degree would be the same for u and y which is 
an obvious nonsense. Thus, the solution appears to be to have two separate rankings for the 
weighted in-degree (citations) as well as for the unweighted in-degree (like we do in Section 
V.3.3) and eventually to combine (average) the ranks from both rankings to produce a 
“universal” ranking like in [Sidiropoulos2006]. 
 
Balanced popularity 
Finally, we will inspire ourselves by the genuine normalization of co-citations and co-
references, and we will introduce the balanced popularity BP. Again, the balanced popularity 
presumes that the endorsment from a node linking  to many other nodes is less significant 
than from a node having only few out-links. Sidiropoulos calls BP the balanced citation count 
and does not distinguish between weighted and unweighted citation counts, because he deals 
with publication citation graphs that normally do not have weights. We define the balanced 
popularity of node u as follows: 
 

∑
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The denominator ∑

∈Ekv
vkw

),(

 is the out-degree of v. There may be an unweighted as well as a 

weighted variant of BP according as we set the weights w. The motivation behind the 
normalization by out-links is clear. For example, the citation of p6 by p3 should be twice as 
valuable as that by p4, because p4 has twice as many out-edges as p3. 
 
All the methods measuring popularity we have described so far are called first-order or 
radius-1 methods. The score obtained for a node depends only on its direct neighbours. In 
other words, nodes not sharing the same edge have no influence on each other. This is in 
contradiction with the real life as objects in social networks often have an indirect impact on 
one another. The next higher-order technique takes this into account. 

III.2.2 Prestige 
Prestige [Chakrabarti2002, p. 205] is defined recursively: the prestige score of a node 
depends on the prestige scores of nodes that point to the node, and their scores depend on 
nodes pointing to them and so forth. Thus, prestige Pr(u) of node u is computed as follows: 
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Actually, prestige is authority in HITS (see Section II.3), and it can also be normalized by 
out-links which is, in turn, the base of PageRank described in detail in Section II.2. Prestige 
can be easily computed with power iterations like HITS with the omission of hubs. Let         
p(0) = [1,…,1]T be the initial prestige vector of prestige scores of all nodes in the graph at 
time 0. We will then iteratively update the prestige vector, p(t + 1) = ATp(t), and L1-normalize 

it (i.e. ||p(t)||1 = ∑ =

N

i i tp
1

)( should be one) after each iteration to avoid overflow. We will 

iterate until convergence of p, which will give the final prestige scores of all nodes summing 
up to one. Of course, the greater the score, the higher the prestige. See the section on HITS for 
some notes on the eigenvectors of this system. Unfortunately, the prestige scores of nodes that 
are not in cycles and that are not even linked to by nodes in cycles converge to zero 
[Sidiropoulos2006]. 
  
This is not a problem in graphs with no cycles. (Theoretically, there should not be any loops 
in the graphs of citations between publications, although it is not impossible in practice.)  But, 
of course, this fact is very annoying in the networks that are supposed to have many cycles 
such as citations between authors or the World Wide Web. The cycles in these types of 
networks are sometimes created deliberately so as to augment the prestige or any other 
recursive ranking score of theirs or of a particular node. See also the remarks on spamming in 
sections I.2.1 and II.2.6 and the paper on link farm spams by [Wu2005].  
 
What about self-citations? We have not talked about them so far. There are no restrictions on 
the diagonal values of the node adjacency matrix A. They can be 0 or 1 just like the other 
matrix elements. In fact, self-citations are very easily detectable small cycles. As we have just 
seen, loops may cause problems when applying recursive evaluation mechanisms. Therefore, 
we recommend to remove self-citing edges from the graph (like in Chapters V and VI) unless 
we are interested in some special graph properties. 

III.3 Centrality 
An alternative measure of importance of a node in a network is its centrality. We briefly 
mention three centrality metrics – radius, closeness, and betweenness. The radius r(u) of node 
u is equal to maxvd(u,v) where d(u,v) is the distance from u to (another) node v in graph G. 
Distance is the length of the shortest path from one node to another. Thus, radius is the 
distance to the most distant node in the graph. The node with the smallest radius is called the 
center of the graph. Evidently, nodes with a small radius have more influence in the network 
than nodes with a large radius. Closeness is somewhat similar to the radius, but it is 
represented by many distances to all other nodes instead of a single quantity. A central node 
should be close to any other node in the graph.  
 
Betweenness is the number of times a particular node lies on the shortest path between any 
two nodes in the graph considering each possible pair of nodes. The node with a high 
betweenness centrality controls the information flow between other vertices. If we remove 
such a node, a large number of shortest paths get longer or the graph even breaks up into 
(more) components. A clear drawback of betweenness is its computational time complexity 
O(n) with n as the number of nodes, which makes it impractical for large graphs. It is 
reasonable to calculate the radius and closeness only for the largest graph component. On the 



Chapter III  Social Networks 

 53 

other hand, we can compute the betweenness centrality in a graph with components, but it 
means examining many shortest paths “in vain”. The high time complexity of betweenness 
would then suggest to use it only for the largest component, although this usually does not 
help much, because real-world networks often have a very big largest component either (see 
Section IV.1). 
 
All centrality metrics can be adapted for directed, undirected, weighted as well as unweighted 
graphs. A single measure is not appropriate in all situations. Therefore, several techniques of 
importance evaluation should always be employed in parallel. Liu [Liu2005] uses prestige 
and centrality measures in the analysis of a special kind of social networks, which we will 
introduce in the next section. 

III.4 Co-authorship networks 
Co-authorship networks are a special case of social networks, in which the nodes are authors 
and edges mean collaboration between authors. Unlike the citation networks discussed in the 
previous sections, in which each edge is endorsement, recognition, acknowledgement, or 
express of debt, an edge between two authors in a co-authorship graph implies that those two 
authors have been or still are colleagues. They have co-authored one or more publications as a 
result of their collaboration and common research effort lasting for years or even decades. 
This is in contrast to citations, where the citing author often does not know the cited author in 
person, and they may be divided by a time span of up to centuries. In general, collaboration is 
much stronger tie than a citation: authors know each other personally. (Let alone the “fake” 
co-authorships that occur from time to time.) 
 
Growing interest 
In recent years, many research papers  have appeared that deal with the analysis of co-
authorship networks [e.g. Nascimento2003, Wagner2003, Smeaton2003, Farkas2002,  
Otte2002, He2002, Cunningham1997]. It is in relation to the emergence of a large number of 
electronic sources of bibliographic data. We cover some of them in Chapter IV. The analysis 
of co-authorship networks instead of citation networks is advantageous in that there is more 
reliable data to analyze. While citation indexing requires much manual labour and even if 
fully or partly automatized it is prone to errors, creating a co-authorship graph is by far not so 
demanding. 

III.4.1 Network Types  
Liu et al [Liu2005] enumerate three possible representations of co-authorship (collaboration) 
graphs – undirected unweighted (also called binary or, more generally, unit-weighted) graph, 
directed unweighted graph, and directed weighted graph. Let us have a paper p1 co-published 
by authors a1, a2, and a3 and a paper p2 co-authored by a1 and a2. The three representations of 
this co-authorship network are visualized in Figure III.4 – as an undirected unweighted graph 
(left), directed unweighted graph (middle), and a directed edge-weighted graph (right) the 
weights of which will be explained bellow. 
 
Can we measure prestige? 
The undirected unweighted graph is the simplest form from which we can, however, gain all 
centrality information  for each node. To be able to measure prestige and popularity, we must 
turn it into a directional network. So each original undirected edge is transformed into two 
inversely directed edges so that the relationship between the nodes sharing the original edge is 
symmetric. Let us recall that the endorsement (directed edge) is not a citation but a 
collaboration. Does  it make sense to measure popularity or prestige on the basis of 
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collaborations and not on citations? Because of the lack of free availability of reliable citation 
data some researchers take advantage of directed collaboration networks and then try to 
identify authoritative authors as if it was a classical network of citations between authors. But 
is a researcher who has many collaborators more prominent than another scientist who has 
just a few colleagues? While citation indexing and analysis is an established means of 
determining significant sources, the analysis of co-authorship networks with view of finding 
authoritative researchers is not yet mature. A popular scientist in the collaboration network 
may be authoritative in some sense, but such authority will probably be different from the 
authority based on citations.  
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Figure III.4: Graph representations of a co-authorship network. 

 
And, last but not least, authors who often publish their papers alone (without co-authors) are 
strongly handicapped if not entirely discarded in a collaboration authority ranking. The 
number of publications written by one author may be quite large. For example, in the DBLP 
data set we work with Section V.3, 149 031 papers of the total of 472 043 are single-author 
papers which accounts for 31.6 %. The publications examined by Liu et al. from the digital 
library research community were single-author articles in 19.6 %. Petříček [Petříček2005] 
reports about 10% single-author papers for DBLP and CiteSeer. The practical meaning of 
collaboration-based authorities is yet to be submitted to further research. 

III.4.2 Weighted Networks 
If we admit the existence of collaboration authorities, we might want the endorsements in a 
directed collaboration network not to weigh equally. In order to be able to assign weights to 
edges, we need some additional, explicit as well as implicit knowledge not included in the 
simple co-authorship graph.  For example, co-authors of a paper jointly published by two 
authors are surely more connected than co-authors of a paper written by fifteen researchers. 
Also, collaboration between frequent collaborators is likely to be more intensive than between 
occasional co-authors and, therefore, the collaboration link should weigh more.  
 
Frequency and exclusivity 
Based on the ideas above, Liu defines two factors that will further determine weights in the 
directed edge-weighted collaboration graph – co-authorship frequency and exclusivity. The 
motivation behind introducing these two factors is to give more weight to collaboration links 
that connect authors who often co-publish together with a minimum number of other authors 
involved. Thus, the resulting graph  is then  G = (V, E, W) where V = {a1,…,aN} is the set of 
authors as nodes, E is the set of co-authorship links between authors as edges, and W is the set 
of weights wij assigned to each edge (ai, aj). We also need a set of publications P = 
{ p1,…,pm}, because Liu does not consider a bipartite publication-author graph like we do in 
Section V.1. The weight wij  is computed as follows: 
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where cij is the co-authorship frequency of authors ai and aj computed like this: 
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and gi,j,k is the co-authorship exclusivity of authors ai and aj (ai ≠ aj) in publication pk defined 
in the following way: 
 

)1)((1,, −= kkji pfg  (III.8) 

 
where f(pk) is the number of authors of publication pk. 
 
The weights in (III.6) are normalized so that the sum of weights on edges emanating from a 
node is one. This is necessary, because a recursive PageRank-like algorithm will then analyze 
the graph and compute prestige, which requires this property for convergence. It also enables 
to interpret the weights as transition probabilities of a random walker on the graph that would 
not be allowed to randomly jump to an arbitrary node. An example of weight calculation is 
shown in Table III.1. 
 

paper 1: {a1, a2, a3}; paper 2: {a1, a2}  
Exclusivity 

paper authors result 
p1 a1,a2 0.5 
p1 a1,a3 0.5 
p1 a2,a3 0.5 
p2 a1,a2 1.0 

Frequency 
authors calculation result 

a1,a2 0.5 + 1 1.5 
a1,a3 0.5 0.5 
a2,a3 0.5 0.5 

Weight 
edge calculation result 

(a1,a2) 1.5 / (1.5 + 0.5) 0.75 
(a2,a1) 1.5 / (1.5 + 0.5) 0.75 
(a1,a3) 0.5 / (1.5 + 0.5) 0.25 
(a3,a1) 0.5 / (0.5 + 0.5) 0.50 
(a2,a3) 0.5 / (1.5 + 0.5) 0.25 
(a3,a2) 0.5 / (0.5 + 0.5) 0.50 

 

Table III.1: Weight calculation for graph in Figure III.4. 
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Context in our work 
Liu’s weights strengthen relationships between authors who often and exclusively co-publish. 
In Chapter V, we introduce similar factors into a citation graph. However, these factors affect 
the weights inversely, because a citation between two authors who frequently write articles 
together should weigh less than that between “foreign” authors. The advantage of considering 
these factors in a citation graph is that the detection of authoritative sources from a graph of 
citations is a fully recognized method whereas finding authorities in a collaboration network 
is still in experimental stages and has the drawbacks we discusses earlier. In addition, the 
directed weighted co-authorship graph representation of Liu et al. is not self-contained. To 
compute weights, we need additional information (such as a table of publications and their 
authors) that is nowhere to be found in the graph. On the other hand, our graph representation 
in Section V.1 is self-descriptive. We generalize and extend the notion of co-authorship 
frequency and exclusivity and employ them in a weighted citation network to identify “more 
fairly” authoritative researchers.  

III.5 Scientometrics 
The social networks we present in this chapter (co-authorship and citation networks) are often 
studied in bibliometrics – a scientific domain seeking to discover interesting publication 
patterns. Because Web pages can be regarded as publications,  techniques and methodologies 
from bibliometrics have been widely adopted in webometrics to “measure“ Web pages. 
Interestingly, some methods, such as prestige computation, have gone the opposite way – 
although originally developed for Web pages, they are now being applied to standard printed 
publications. If these publications are of scientific nature (journal articles, conference papers, 
technical reports, dissertations, technical books, patent documentations etc.), we can talk 
about scientometrics. 
Scientometrics generally tries to measure research performance of individuals and groups of 
individuals (such as institutions or even countries) on the basis of the number of “generated” 
publications or patents and their impact on the research community. One can think of impact 
as a kind of popularity or prestige. The significance of scientometrics has been growing since 
research-funding bodies need some objective and quantifiable information to justify their 
funding policies. Their objective is to support high quality research and to limit aids to 
unproductive individuals or institutions. In this section, we will describe two metrics. One, 
quite well established although sometimes contested, for measuring  impact of scientific 
journals and another one, rather new, for calculating research performance of individuals. 

III.6 Impact Factor 
The journal impact factor (IF) was first presented by Eugene Garfield in 1955 and reviewed 
many times in his subsequent publications [e.g. in Garfield1979, Garfield1999]. Nowadays, it 
plays a key role in the annual “Journals Citation Reports” issued annually by Thomson 
Scientific (see Section IV.3.3). In the light of the explanations above, we can regard it as a 
first-order popularity metric computed by normalizing weighted in-degrees. In fact, the 
impact factor of a journal in a given year is the average number of citations an article 
published in the journal in the two preceding years obtains from journal articles published in 
the current year. 
 
We can group publications p from Section III.1 according to journals in which they appear  
and thus get a set of new nodes VIF = {v1,…,vN} representing journals where vi = {p1,…,pk}. 
The original edges (pi,pj)∈E for citations between publications will be grouped similarly so as 
to form new edges between journals (vp,vq)∈EIF if and only if there exists (pi,pj)∈E such that 
pi∈vp and pj∈vq. The weight θpq∈WIF of (vp,vq)∈EIF  will be the number of edges directed 
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from vp to vq, θpq = |{(pi,pj)∈E: pi∈vp ∧ pj∈vq}|. Now that we have the journal citation graph 
GIF = (VIF, EIF, WIF), we further define IF(vi,t) as the impact factor of journal vi in year t, 
c(vj,vi,t) as the number of citations to articles  published in journal vi in years t – 1 and t – 2 by 
articles published in journal vj in year t, and s(vi) as the number of articles published in journal 
vi in years t – 1 and t – 2. The impact factor of journal vi in year t is then 
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Criticism 
Many objections to the calculation of IF may arise. First, only citations by articles in indexed 
journals are considered. What journals should be indexed? The selection of journals may 
immensely affect the IF computed. In addition, papers from conference proceedings are 
completely disregarded (i.e. citations made by them are never counted) which is an obvious 
problem in such a rapidly evolving field like computer science, in which some conferences 
are much more prestigious than journals. Second, the definition  of IF admits self-citations 
which may result in a strong bias towards frequently self-cited journals. Third, why has the 
time delay of two years been chosen? Two years might be inconvenient for some research 
domains. And, last but not least, because of its popularity-based foundation, the impact factor 
measures quantity rather than quality. Should it not compute prestige instead? 
 
This and other criticism has been expressed in numerous publications [Harter1997, 
Seglen1997, Nederhof2001, Bordons2002, Lewison2002, and Saha2003 among others]. 
Bollen [Bollen2006] proposes to replace IF with a weighted PageRank, in which weights are 
given as above in the journal citation graph, to determine prestige (status in his words) rather 
than popularity of journals. He conducts an interesting study on the data from “2003 Journal 
Citation Reports” and identifies journals for which the popularity and prestige ranks 
significantly differ. 

III.7 Index H 
The index H (also called h-index, h-score or Hirsch-Index) is a simple metric of research 
performance proposed by J. E. Hirsch in 2005 [Hirsch2005]. A researcher has a score h if h 
papers by him have at least h citations (in-links) each and the other papers have at most h 
citations each. For instance, a scientist with  h = 30 has thirty publications each of which has 
been cited thirty times at least. The calculation of h is quite simple – we just sort publications 
of a particular researcher by citations descendingly and denote them with 1, 2, 3, etc. We then 
start from 1 and proceed until we found a publication number g that is larger than the citation 
count of that publication. The h index is g minus one. Clearly, there may be publications with 
the same citation count h that do not contribute to the h-index because they lie on the h+1st, 
h+2nd, etc. position. 
 
Properties 
Hirsch finds two interesting relations. The first one is a very rough estimate of the number of 
citations with regard to h: 
 

2ahT =  (III.10) 
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where T is the total number of citations to publications of a scientist and a is a coefficient 
between 3 and 5 determined empirically. In the following equation, n is the number of years 
in service of a researcher usually  measured from the year of the first publication and m is the 
slope of h versus n. 
 

mnh ≈ . (III.11) 
 
Obviously, if a researcher has h = 20 after twenty years of research or h = 40 after forty years 
of scholarly work, m is 1. On the other hand, both a researcher with h = 20 after ten years  and 
a scholar with h = 60 after thirty years of service have the same m = 2 and their research 
output may be considered as comparable. The parameter m allows for evaluating researchers 
at different levels of seniority. Hirsch concludes that a scientist (in physics) with m close to 
one is successful and a scientist with m about three is an outstanding individual. 
 
The index H has some significant advantages over traditional scientometric techniques. It is a 
single number (compared to citation counts of the most highly cited papers), it does not prefer 
quantity to quality (compared to the number of publications), and it acknowledges a 
systematic long-term work rather than a few frequently cited research results. On the other 
hand, it has some inconveniences. Similarly to citations, it cannot be compared across 
different scientific fields and subfields because of distinct citation patterns.  For example, the 
top h-scores in physics and computer science are about 70, whereas their counterparts in 
medical and biological sciences can be twice as high. Also, the h-index of a scientist who 
stops publishing can never increase in spite of his publications being cited. 
 
Bibliographic notes 
The h-index is very new and is subject to some controversy and amendment proposals. 
Meanwhile, it has been suggested for journal evaluation [Braun2006] and compared with 
standard bibliometric measures and peer review judgements [Raan2006, Bornmann2005]. 
Bornmann and Daniel [Bornmann2007] summarize the state-of-the-art knowledge about the 
index h. However, its simplicity and availability makes it suitable for comparisons with other 
scientometric or bibliometric rankings such as those presented in Section V.3.3. A list of 
computer science researchers with the largest h-index is available at [24]. The index h can be 
retrieved automatically from Google Scholar (see Section IV.3.2) – a script for this purpose 
sorting an author’s publications by citation counts may be found at [26] and a user interface at 
[25] or [34].  

III.8 Summary 
In this chapter, we have discussed social networks and we have shown how closely 
bibliometrics, webometrics, and scientometrics are related to each other via applications of 
social networks. Therefore, some parts of this chapter are on the boundary and could be 
placed in Chapter  I on ranking algorithms for Web sites. We have presented several well-
known metrics for evaluating nodes in a social network. In particular, we point out 
Section III.4.2 on weighted co-authorship networks. The bibliographic information used here 
to calculate edge weights in a collaboration graph is extended and newly adopted for citation 
graphs in Chapter V. 
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IV Web Systems for Researchers Support 

In this chapter we will describe several on-line systems that may serve  for the support of 
researchers by providing bibliographic information, citation indices, search services, or 
repositories of scientific publications. Basically, we can group these systems into free and 
charged applications, and into manually maintained and automated ones as is shown in    
Table IV.1. We will take a more datailed look at two prominent representatives – DBLP for 
the part of man-made services and CiteSeer from the group of computerized systems. The 
other services (Google Scholar,Rexa, ISI Web of Science, and ACM Portal) will be 
mentioned briefly. The importance of this chapter for the core of the thesis (detection of 
authoritative sources) is in that it introduces already existing services that allow for searching 
for authorities or provide data that might be used for the search itself or for the verification of 
search results in the field of (computer) science scholarly publications  

IV.1 DBLP 
When not stated otherwise, the information in this section comes from [Ley2006] and [6]. The 
DBLP digital library is a collection of bibliographic data from the field of computer science. 
It is manually maintained and freely available at [5]. As of April 2007, it contains over 
870 000 bibliographic records. Its history reaches as far back as 1993, shortly after the 
appearance of the World Wide Web. Although more specific at the beginning, it gradually 
began to cover the whole domain of computer science and can be read as Digital Bibliography 
& Library  Project now.  
 
Features 
DBLP is updated regularly and some 110 thousand new records are added each year. 
However, this is far below the number of new computer science papers that appear. It has 
been estimated that only about one fourth of new papers is input into the DBLP 
[Petříček2005]. The authors of DBLP, a small research group at the University of Trier in 
Germany, admit that the selection of papers for the digital library is more or less random. 
Nevertheless, the “all or nothing policy” is applied – whenever a journal issue or a conference 
proceedings book is selected, all of its papers are input. Some basic funding enables to hire 



Chapter IV  Web Systems for Researchers Support  

 60 

students to enter bibliographic data. The justify the huge manual effort needed with respect to 
fully autonomous systems such as CiteSeer, some benefits of this approach must prevail. 
Therefore, a great care is taken when entering author names. The objective is to unify the 
spelling of names and to disambiguate authors with the same names. Both manual and 
automated  techniques are employed in this process and, actually, this takes most of the time 
of entering new data. As a result, the information on publications by an individual author in 
DBLP is quite reliable. Moreover, even diacritical symbols may be used by means of special 
character codes. A feature that often does not work well in other on-line bibliographic 
systems. 
 
The most significant property is the availability of all the data in an XML file [8]. This allows 
for numerous bibliographic studies based on DBLP such as [Sidiropoulos2005],  
[Sidiropoulos2005b], [Sidiropoulos2006], [Bani-Ahmad2005], [Cai2005], [Liu2005], 
[Rahm2005], [Mohan2005], [Elmacioglu2005], [Nascimento2003], [Hassan2004] to name a 
few. DBLP has clearly established itself as a provider of high quality data for data mining 
methods. We have respected its outstanding role in this context, and we base our experiments 
in Section  V.3 on DBLP. Besides the regularly updated data file, there is also a “preserved” 
file which enables different researchers to conduct experiments with the same data and to 
compare their results. Unfortunately, researchers often neglect this option.  
 
Citations 
Unfortunately, only a very small part of DBLP publications contains references to other 
papers. It is only a few percent. See [Sidiropoulos2005] for a list of conferences and journals 
whose papers include references. These are primarily papers that are part of the so-called 
“SIGMOD Anthology” [9]. In fact, about eighty percent of those 100 000 citation links in 
DBLP are citations made by SIGMOD Anthology publications. The anthology consists of 
articles the full-text versions of which are digitized  and distributed on CDs (DVDs) for a fee. 
There are over 14 000 PDF files (as of January 2006). For some of the papers in the anthology 
the reverse “cited by” information was also added. Interestingly, this information is 
sometimes not disclosed by the DBLP Web interface and/or by the off-line browser [7] even 
if it evidently appears in the XML file. It is unclear why. For instance, for [Brin98] no 
citations (in-links) are shown on the Web site whereas the off-line browser finds eight 
citations in the September 2006 data file. It cannot be explained by different data files because 
the off-line file can never be more recent that the on-line data.  
 
Also, it is not evident how to obtain the list of citing publications for a particular paper. 
Among others, to get the total citation count like in [10]. In fact, it is necessary to go from the 
anthology page or the corresponding BibTeX page over to the “citation” page via the <ee> 
element. For instance, from [11] or [12] to [13]. This “citation” page does not exist for some 
cited papers, however. The safest way to find all existing references in DBLP to a paper 
seems to look for that paper’s key (ID) directly in the <cite> elements of the DBLP XML file. 
In general, citation analysis based on DBLP is still rather limited when compared to the 
extensive usage of its co-authorship graph. Therefore, some researchers even add directed 
edges into the co-authorship graph and consider it as a citation graph [Liu2005].  
 
Statistics 
The co-authorship graph has more 440 000 nodes in January 2006. There is one big 
component with over 330 000 authors whereas the second largest component has only 37 
nodes! For more than 8 000 authors there exists a link to their personal homepage. We take 
advantage of this feature in Section VI.2.2 where we must decide on the “nationality” of a 
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researcher. For each publication record there is a BibTeX entry at least. For some publications 
a link to their on-line version is provided. Papers from the SIGMOD Anthology have their 
“local” links to a specific file on the CD/DVD included. Regarding the technology behind 
DBLP, surprisingly there is no underlying database [14]. Scripts and programs parsing data 
files and searching it in the main memory provide search results. This is true for both the on-
line and off-line version. Therefore, before applying data mining methods to the DBLP data it 
is often needed to transfer it (or a portion of it) into a relational database.  
 
We do not want to describe the internals of the XML data provided by DBLP, but we will 
rather terminate this section with a look at Figure IV.1 adopted from [6]. As we can see, the 
vast majority of publications in DBLP are either conference papers (inproceedings) or journal 
articles. The other publication types are negligible. That is why we analyze only papers and 
articles in Section V.3. 
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Figure IV.1: Distribution of various publication types and years in DBLP on 12 Jan 2006. 

 

IV.2 CiteSeer 
Services [15] as well as the full source code of CiteSeer (at the beginning called CiteSeer, 
then ResearchIndex, now CiteSeer again) are freely available. CiteSeer uses search engines 
(with queries “publications“, “papers“, “postscript“, etc.) and crawling to efficiently locate 
papers on the Web. Start points for crawling may also be submitted by users who would like 
to have their documents indexed. It may take a few weeks after submitting to happen so. Its 
database is continuously updated  24 hours a day. Unlike DBLP or ISI Web of Science, the 
digital library and also its citation index (which is quite limited in DBLP as we mention in 
Section IV.1) are constructed in a fully automated way – no manual effort is needed. In April 
2007, more than 760 000 documents are indexed. 
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Features 
Operating completely autonomously, CiteSeer works by downloading papers from the Web 
and converting them to text. It then parses the papers to extract the citations and the context in 
which the citations are made in the body of the paper, storing this information in a database. 
CiteSeer includes full-text article and citation indexing, and allows the location of papers by 
keyword search or citation links. It can also locate papers related to a given article by using 
common citation information or word similarity. Given a particular paper, CiteSeer can also 
display the context of how subsequent publications cite that paper [Lawrence1999]. 
 
CiteSeer downloads Postscript or PDF files, which are then converted into text using PreScript 
from the New Zealand Digital Library project [16] explained in [Nevill-Manning1998]. It 
checks that the document is  a research document by testing for the existence of a reference or 
bibliography section. 
 
Once CiteSeer has a document in a usable form, it must locate the section containing the 
reference list, either by identifying the section header or the citation list itself. It then extracts 
individual citations, delineating individual citations by citation identifiers, vertical spacing, or 
indentation. CiteSeer parses each citation using heuristics to extract fields such as title, author, 
year of publication, page numbers, and the citation identifier. (Compare with the techniques 
of information extraction with hidden Markov models in [Seymore1999].) CiteSeer also uses 
databases of author names, journal names, and so forth to help identify citation subfields. 
 
Internals 
Citations to a given article may have widely varying formats. Much of the significance of  
CiteSeer derives from the ability to recognize that all of these citations might refer to the same 
article. Also, CiteSeer uses font and spacing information to identify the title and author of 
documents being indexed. Identifying the indexed documents allows analyzing the graph 
formed by citation links, which results in abundant citation statistics. 
 
Several classes of methods for identifying and grouping citations to identical articles are 
applied [Lawrence1999]: 
 

� String distance measurements, which consider distance as the difference between 
strings of symbols. 

� Word frequency measurements, which are based on the statistics of words that are 
common to each string (TFIDF – Term Frequency vs. Inverse Document Frequency, 
common in information retrieval, see [Chakrabarti2002, p. 57]). 

� Knowledge about subfields or the structure of the data. 
� Probabilistic models, which use known bibliographic information to identify subfields 

of citations. 
 
Furthermore, algorithms for finding related articles are used: 
 

� Word vectors, a TFIDF scheme used to locate articles with similar words. 
� Distance comparison of the article headers, used to find similar headers. 
� Common Citation vs. Inverse Document Frequency (CCIDF), which finds articles 

with similar citations. 
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Data 
Besides links to the original documents on the Web, which have been downloaded and 
processed, and document copies in its repository, CiteSeer provides links to corresponding 
document pages in DBLP and on the ACM Portal as well. Whether these DBLP and ACM 
references have been added manually is unclear. Thanks to its automated citation indexing, 
CiteSeer is able to publish lists of the most cited researchers on a regular basis [17]. However, 
the computer-generated citation rankings sustain the same problems we talk about in 
Section VI.2.1 – incorrectly recognized author names, ambigous names, difficulties with 
diacritics, etc. It is also possible to get all CiteSeer’s bibliographic data in an XML-like 
format including references and author affiliations for some publications or just BibTeX 
records with basic information [18]. Suprisingly, CiteSeer’s data are not widely used in 
scientometric research – an exception is [An2004].  

IV.3 Other Systems 

IV.3.1 Rexa 
Rexa [19] is a service similar to CiteSeer that has evolved prom a project called Cora. It is 
newer and it has only about a half of the number of documents in its database (about 380 000 
in April 2007). However, it enables to search bibliographic references to a total of  seven 
million research papers, and its user interface appears to be more comfortable and intuitive. 
Documents are not added continuously to the digital library, though. The last extensive Web 
crawl was performed in 2005 and the next one is in preparation. Rexa is based on the work of 
Andrew McCallum and his colleagues, and the technology behind it is relatively well 
documented compared to CiteSeer [Seymore1999, McCallum1999a, McCallum1999b, 
McCallum2000 and others]. Emphasis is put on extracting information from scientific 
publications with machine learning techniques and on creating networks of linked objects – 
papers, authors, institutions (in development), etc. In particular, this enables a quick retrieval 
of the citation count of an individual author. For a more detailed overview of the information 
extraction methods employed, see [Seymore1999]. 

IV.3.2 Google Scholar 
Google Scholar is a service provided by the Google Web search engine [20] in which it is also 
seamlessly integrated. It is a powerful tool for searching for bibliographic information 
operating entirely autonomously. Scientific documents are collected from all over the Web, 
indexed, and made available to the public via an effective user interface resembling that of its 
general search engine. It is not disclosed how many documents there are in the database, but 
we can learn on the Web site of Rexa that Rexa’s size is approximately one fourth of the 
computer science papers indexed by Google Scholar. That would mean some 1.6 million 
documents let alone the other six scientific domains covered by Scholar and references to 
articles that have actually not been indexed, but whose bibliographic information is known 
(analogous to dangling pages from Section II.2.2). It is certainly the most comprehensive on-
line repository of scientific bibliographic information at present. 
 
On the other hand, Google Scholar may be considered less as a digital library that the other 
systems above. An open access to the cached versions of papers downloaded remains limited. 
Quite often only links to an abstract on a publisher’s Web site are supplied, which then 
requires a subscription to get access  to the full text of the article. Of course, articles on non-
login-protected Web sites are still accessible like standard documents found by a search 
engine. Therefore, Scholar groups similar documents and usually offers free versions of a 
charged document retrieved somewhere else on the Web. (For instance, a preprint of a journal 
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article downloadable from the author’s home page.) Moreover, there is a possibility to search 
library catalogues for print versions of papers. Scholar shows citation counts for individual 
publications, though not for individual researchers. The latter must be done manually or via 
scripts that communicate directly with Scholar’s Web interface as is shown at [26] and 
mentioned in Section III.7 in the context of counting the H score. 

IV.3.3 Web of Science 
Thomson Scientific Web of Science (formerly ISI Web of Science [27] – ISI stands for 
Institute for Scientific Information) enables users to search a database consisting primarily of 
papers from about 8 700 research journals (5 900 journals with 10.8 million searchable 
articles for the “Science” domain which is still a superset of computer science). In addition to 
journals, specific Web sites are also included in the database. See [Testa1998], [28], and [29] 
for information on how the journals and Web sites are selected. The database covers 1978 to 
date, but only the 1991+ portion has English language abstracts. This amounts to 
approximately 70 % of the articles in the database. There are weekly updates, with items 
usually appearing 3 to 8 weeks after publication [30]. Its important feature is the cited 
reference searching. Citations mean later references citing an earlier article. Users can search 
for all references to specific papers, authors or even keywords. A related service provided by 
Thomson Scientific is “Journal Citation Reports” [31]. The complete statistics of citations 
between papers from the journals indexed are available there. This includes impact factors of 
individual journals – quantifiers that are discussed in Section III.6 and disputed by 
[Bollen2006]. Yet another derived Web site is [32] with a list of over 300 “highly cited” 
computer science researchers. The Web of Science is created and maintained manually. It is a 
commercial product. 

IV.3.4 ACM Portal 
The ACM Portal [33] is a Web interface of the digital library of the Association for 
Computing Machinery. The library is further divided into the Digital Library proper and into 
the Guide. There are some 200 000 articles published by ACM and partner societies in the 
Digital Library (April 2007). The full texts of ACM publications are available for subscribed 
members (the yearly rate is 198 USD). However, publications owned by third party publishers 
are still charged. In addition, the ACM Guide comprises the Digital Library plus more than 
700 000 bibliographic records of articles cited by ACM papers.  The ACM Portal is 
constructed manually, however, references in articles are extracted automatically using OCR 
techniques. References (out-links) and citations (in-links) are shown in principle only for 
ACM publications in the Digital Library. There is only an indirect way how to obtain the 
number of citations for an individual researcher – find all of his/her publications in the library 
and count their “citings” (ACM’s expression for citations). Research conducted on the data 
from the ACM Digital Library includes e.g. [Kim2004]. 

IV.4 Summary 
In this chapter, we discuss the topic of on-line systems assisting researchers in finding 
bibliographic information such as publication titles, dates, names of authors, references, 
citations or even providing them with access to the abstracts or full texts of the publications 
being searched for. We mention six such systems and omit others like INSPEC by IEE [23], 
Scirus run by Elsevier [22], or Academic Live Search by Microsoft [21]. The importance of 
this chapter for the thesis is in that it presents data usable in social network analysis (see 
Chapter III) and thus appropriate for testing and verification of methods introduced in 
chapters V and VI. 
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The summary Table IV.1 may be regarded as a feature matrix of the systems above. Some 
numbers are approximate only – such as those 1.6 million Google Scholar documents for 
computer science or 10.8 million Web of Science articles that cover all natural and technical 
sciences. By reference linking we mean whether one can navigate forward by following links 
to referenced papers and citations linking is the opposite – one can go back to citing 
publications. Let us remark in this context that a different terminology is used in Web of 
Science – navigating forward means forward in time and it is exactly the same that we call 
going back to citing papers. At the ACM Portal, reference and citation linking is possible only 
in the Digital Library, not in the Guide. In some systems we can find out the exact citation 
count for a particular scientist, in some others we have to count it indirectly by means of 
citations to the scientist’s publications. 
 

 DBLP 
ACM 
Portal 

Google 
Scholar Rexa 

Web of 
Science CiteSeer 

Free yes no yes yes no yes 
Automated no no yes yes no yes 
# documents 870 000 200 000 1 600 000 380 000 10 830 000 760 000 
All bibl. data 
downloadable 

yes no no no no yes 

Reference 
linking 

partly 
partly 
(DL) 

no yes yes yes 

Citation 
linking 

partly 
partly 
(DL) 

yes yes yes yes 

# citations for 
a publication 

partly 
partly 
(DL) 

yes yes yes yes 

# citations for 
an author 

partly 
indirectly 

partly 
indirectly 

indirectly yes yes indirectly 

 

Table IV.1: Feature matrix of systems as of April 2007. 

 
We can conclude that DBLP appears to be the best repository for automated experiments with 
bibliographic data, for it is free, all of its data are easily downloadable and manageable 
(XML), and it is relatively free of errors (unlike CiteSeer) due to its manual creation. 
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V Bibliographic PageRank 

Notions of importance, significance, authority, prestige, quality and other synonyms play a 
major role in social networks of all types. They denote an object that has a large impact on the 
other objects in the community. Perhaps the best example are bibliographic citations in the 
scientific literature. Counting citations of research publications is a relatively objective 
manner to determine quality research known since a long time ago. With the fast growth of 
the World Wide Web in the past ten years, this kind of analysis has become essential also in 
this domain in which citations are links between Web pages. Therefore, current Web search 
engines make use of various link-based quality ranking algorithms whose rankings they 
combine with the keyword search results to offer the user not only topic-relevant but also high 
quality Web pages. The best-known link-based ranking algorithm is PageRank (see 
Section II.2). This recursive algorithm is applicable to any directed graph – such as a graph of 
citations between authors or papers. However, bibliographic data usually offers more than just 
citations. Collaboration networks are also a valuable source of information and are often 
studied (see Section III.4). But their combination with citation graphs, which may lead to 
more fair rankings of authors, has been relatively little examined. In this chapter, we present 
several modifications of the classical PageRank formula adapted for bibliographic networks. 
Our versions of PageRank take into account not only the citation but also the co-authorship 
information. 

V.1 Definitions 
Let GP = (P ∪ A, EP) be an undirected, unweighted, bipartite graph (co-authorship graph),     
P ∪ A a set of vertices (P a set of publications, A a set of authors) and EP a set of edges. Each 
edge {p, a} ∈ EP, p ∈ P, a ∈ A means that author a has (co-)authored publication p. Let       
GC = (P, EC) be a directed unweighted graph (publication citation graph), P a set of vertices 
(the same set of publications), and EC a set of edges (citations between publications). Now, 
based on the two graphs GP and GC, we will introduce yet another graph we will further work 
with. Let G = (A, E) be a directed, edge-weighted graph (author citation graph), A a set of 
vertices (the same set of authors) and E a set of edges (citations between authors). For every  
p∈P let Ap = {a∈A: ∃{ p,a} ∈EP} be the set of authors of publication p. For each (a1,a2), a1∈A, 
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a2∈A, a1≠a2 where there exists (p1,p2) ∈ EC such that {p1,a1} ∈ EP and {p2,a2} ∈ EP and 
Ap1∩Ap2 = ∅ (i.e. no common authors in citing and cited publications are allowed) there is an 
edge (a1,a2)∈E. Thus, (a1,a2)∈E if and only if ∃(p1,p2) ∈ EC ∧ ∃{ p1,a1} ∈ EP ∧ ∃{ p2,a2} ∈ EP 
∧ Ap1∩Ap2 = ∅ ∧ a1≠a2. 
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Figure V.1: Examples of co-authorship, publication citation, and author citation graphs. 

 
Before assigning weights to edges in E, we further define: 
 

� wu,v = |C| where C = {p1∈P: ∃{ p1,u} ∈EP ∧ ∃{ p2,v} ∈EP ∧ ∃{ p1,p2} ∈EC ∧ p1 ≠ p2}, as 
the number of citations from u to v, 

� fu,v = |Pu| + |Pv| where Pi = {p∈P: ∃{ p,i} ∈EP}, as the number of publications by u plus 
the number of publications by v, 

� cu,v = |CP| where CP = {p∈P: ∃{ p,u} ∈EP ∧ ∃{ p,v} ∈EP}, as the number of common 
publications by u and v, 

� hdu,v = |ADCu| + |ADCv| where ADCi = {a∈A: ∃p∈P such that {p,a} ∈EP ∧ {p,i} ∈EP}, 
as the number of all distinct co-authors of u plus the number of all distinct co-authors 
of v, 

� hu,v = |ADCu| + |ADCv| where ADCi is defined as above but it is a multiset, as the 
number of all co-authors of u plus the number of all co-authors of v, 

� tdu,v = |DCA| where DCA = {a∈A: ∃p∈P such that {p,a} ∈EP ∧ {p,u} ∈EP ∧ 
{ p,v} ∈EP}, as the number of distinct co-authors in common publications by u and v, 

� tu,v = |DCA| where DCA is defined as above but it is a multiset, as the number of co-
authors in common publications by u and v, 

� gu,v = fu,v – |SPu| – |SPv| where SPi = {p∈P: {p,i} ∈EP ∧ )( pd PG
 = 1}, as the number 

of publications by u where u is not the only author plus the number of publications by 
v where v is not the only author. 

 
Note that the current authors are considered as co-authors of themselves (variables hd, h, td, 
t). They should actually not be counted in but this would have no effect on the results. 

V.2 Rank Calculation 
We associate a triple of weights (wu,v, cu,v, bu,v) with each edge (u, v) ∈ E where wu,v, cu,v are 
described above and bu,v can be equal to one of the seven following values according to the 
semantics of edge weights we want to stress: a) zero, b) fu,v, c) hu,v, d) hdu,v, e) gu,v, f) tu,v, g) 
tdu,v. We then define the rank R(u) for author u as follows: 
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and d is the damping factor, an empirically determined constant usually set to about 0.9. 
 
In all the variations above, we penalize the cited author for the frequency of collaboration 
with the citing author. We suppose that a citation obtained from a frequent co-author 
(colleague) is less valuable than that from a foreign researcher. Therefore, the contribution 
from citing authors is inversely proportional to the number of common publications with the 
cited author. This happens in case a). On the other hand, we mitigate this penalization under 
some circumstances. In cases c), d), f), and g) we recognize that the relationship between two 
authors is weaker if they have many co-authors in general – cases c) and d) – or in common 
publications – cases f) and g). We also distinguish between all co-authors – cases c) and f) -  
and distinct co-authors – cases d) and g). In case b) we claim that two authors are more 
closely related if they have relatively many common publications in relation to the total 
number of publications by both of them and less related in the opposite case. The same holds 
for case e) where the total number of publications by each author as the only author is 
counted. When all the coefficients c and b are equal to zero, equation (V.1) becomes the 
weighted PageRank formula. (For instance, [Bollen2006] and [Xing2004] work with 
weighted PageRanks.) In addition to this, if all the weights wu,v are set to one, it is the 
standard PageRank [Brin1998]. The coefficients c and b are analogous to the co-authorship 
frequency and exclusivity in [Liu2005] which is mentioned in Section V.4. 
 
Zero c coefficients 
Certainly, there will be many author pairs in G for which c is zero. Does it make sense to have 
a non-zero coefficient b if c is equal to zero? It surely does not when b is t or td. If there are 
no common publications, there are no co-authors in common publications either. Other 
parameters (f, g, h, hd) may (or even must) be greater than zero even if c is zero. But 
modifying the portion of rank distributed between authors only on the basis of all their 
publications (f), all their co-authors (h), etc. without the context of their common publications 
(c = 0) does not look meaningful. Why should author x obtain more rank than author y from a 
particular citing author only for the reason that he/she has written more publications? Briefly, 
we set b to zero whenever c is zero. 
 
Example 
Table V.1 shows edge weights for graph G in Figure V.1. The coefficients f, g, h, and hd are 
zero when c is zero as mentioned in the paragraph above, but their non-zero variants are also 
presented in parentheses for illustration. Edges (p2,p3) and (p3,p2) have no effect because they 
are considered as self-citations (author a2 has co-authored both of them). The proportions of 
rank distributed by author a1 in graph G in Figure V.1 along its out-edges in the standard (PR) 
and weighted PageRank (w) and the variations a) – g) are given in Table V.2. 
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Edge w c f g h hd t td 
{a1,a2}  2 0 0 (4) 0 (1) 0 (7) 0 (4) 0 0 
{a1,a3}  1 1 4 1 7 3 2 2 
{a1,a4}  1 0 0 (3) 0 (1) 0 (5) 0 (4) 0 0 

 

Table V.1: Edge weights for graph G in Figure V.1. 

 
Edge PR w a b c d e f g 

{a1,a2}  1/3 2/4 4/7 4/11 2/7 2/5 2/4 4/9 4/9 
{a1,a3}  1/3 1/4 1/7 5/11 4/7 2/5 1/4 3/9 3/9 
{a1,a4}  1/3 1/4 2/7 2/11 1/7 1/5 1/4 2/9 2/9 
∑ 1 1 1 1 1 1 1 1 1 

 

Table V.2: Proportions of rank distributed by node a1 in graph G in Figure V.1. 

 
For example, to compute σa1,a2 for the variation w), we substitute in (V.2); 
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(V.1) remains 2/4. Thus, one half of rank of author a1 is transferred to author a2 and so on. 

V.3 Experiments 
We tested our algorithms on the DBLP data available in XML. We took advantage of the only 
time-stamped version of the collection from February 14, 2004 [2] which may serve 
researchers as a testbed for experiments and comparisons. We extracted only article and 
inproceedings records exactly like in [Sidiropoulos2005]. 

V.3.1 DBLP Testbed Data 
Statistics 
Table V.3 summarizes some basic statistics of the DBLP data we work with. (For more 
details on DBLP, see Section IV.1.) We spend some time discussing it here as a good 
understanding of it is vital for everyone wishing to reproduce our experiments. The data 
contained 173 630 article records (journal papers) and 298 413 inproceedings records 
(conference papers) that we imported into a relational database. These numbers are in cells B2 
and C2, respectively. The total number of article and inproceedings records (i.e. their 
corresponding XML elements), which we will refer to as papers, is 472 043 (D2). The number 
of papers having some references is only 8 188 (D3) which is less than two percent of the 
total. In addition, a large part of all references from papers (D6) are references to undisclosed 
publications outside of the DBLP library. The references within DBLP (D7) can be further 
decomposed into references to papers (D8) and references to other kinds of publications such 
as books, theses, etc. The corresponding numbers of papers with references within DBLP 
publications and with references to papers are D4 and D5. Exactly 18 285 distinct papers are 
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cited (D11). Time spans are not shown in Table V.3. However, the most recent paper is from 
2004, the oldest one is from 1936. The time period of citing papers is 1970 – 2001, that of 
cited papers is 1945 - 2001 We can also obtain other information from Table V.3, such as the 
number of references from journal papers to conference papers (B10), the number of 
conference-to-conference references (C10), the number of journal papers with references to 
papers (B5), etc.  
 
 

 A B C D 
1  articles  inproceedings  total 
2 # 173 630 298 413 472 043
3 # with ref. 1 818 6 370 8 188
4 # with ref. within DBLP 1 791 6 212 8 003
5 # with ref. to papers 1 771 6 177 7 948
6 # references 47 329 120 822 168 151
7 # ref. within DBLP 30 186 79 003 109 189
8 # ref. to papers 27 801 72 853 100 654
9 # ref. to articles 13 330 29 247 42 577

10 # ref. to inproc. 14 471 43 606 58 077
11 # distinct cited 7 391 10 894 18 285

 

Table V.3: Statistics of article and inproceedings records in DBLP 14 Feb 2004. 

 
Problems with article and inproceedings elements 
The number of papers with references in D3, D4, and D5 is decreasing as well as is the 
number of references themselves in D6, D7, and D8. This results from the fact that if M is a 
set of all publications in the world, Q is a set of publications in the DBLP digital library and P 
is a set of DBLP journal and conference papers then P ⊂ Q ⊂ M. The relationship P ⊂ Q is 
completely disregarded in the statistics on DBLP presented in [Sidiropoulos2005]. For the 
reader who would like to verify our results we provide a small hint in Table V.4. It shows 
occurrences of article and inproceedings DBLP records along with their keys. Also we must 
be aware that some other DBLP XML elements use the “journals”, “conf”, “tr”, and 
“persons” keys. Thus, the key itself does not indicate whether or not a cited publication is a 
journal or conference paper. 
 
 

tag key #  
article journals 173 085 
article persons 10 
article tr 535 173 630 
inproceedings conf 298 322 
inproceedings journals/jods 9 
inproceedings journals/lncs 80 
inproceedings persons/Codd74 1 
inproceedings persons/JohnLM94 1 298 413 
   472 043 

 

Table V.4: Key and tag distribution in our DBLP data. 
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V.3.2 Co-Authorship and Citation Graphs 
Publications 
Let us return to Table V.3. The publication citation graph GC based on the articles and 
inproceedings records will thus have 472 043 nodes (|P| in D2) and 100 654 edges (|EC| in 
D8). So the references not pointing to papers or even pointing outside of DBLP have 
absolutely no effect.  7 948 nodes (D5) will have some out-edges and 18 285 nodes (D11) will 
have some in-edges. There will be 5 389 nodes with both in- and out-degree non-zero (not 
shown in Table V.3). The other graph constructed from the DBLP records is the co-authorship 
graph GP. This graph has |P| + |A| nodes (publications plus authors) which is 472 043 + 
315 485 = 787 528 vertices in total. The number of edges |EP| is 1 070 643. This is actually 
the number of publication – author pairs (see GP in Figure V.1). See Figure V.2 for a 
histogram of the number of co-authors in publications, i.e. of the degrees of publication nodes 
in GP. The most frequent number of co-authors is two and a publication has 2.27 co-authors 
on average. Interestingly, there are also publications without any authors which is an obvious 
omission in DBLP. 
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Figure V.2: Histogram of the number of co-authors in DBLP publications. 

 
Author citation graph 
The resulting citation graph of authors G had 295 531 edges (no self-citations are allowed and 
citations between publications that have at least one common author are considered as self-
citations) which is |E|. Obviously, |A| is still 315 485. 12 934 nodes had a non-zero in-degree, 
6 992 nodes had a non-zero out-degree. 4 748 nodes had both a non-zero in-degree and a non-
zero out-degree. Only 15 178 authors were not isolated. This low inter-linkage of nodes in G 
is a result of the nature of the DBLP data. Citations were systematically input only for a small 
number of journals and conferences, such as SIGMOD Record or VLDB Journal, as was 
already mentioned in [Sidiropoulos2005]. See Figure V.3 for a cumulative distribution of in- 
and out-degrees and their weighted variations (citations and references) in graph G. The 
maximum value for in-degree is 1 857, for out-degree 834, for citations (in) 5 346 and for 
references (out) 2 594. Apparently, the largest bin would be 0+ with all the isolated authors 
included. It is not depicted in Figure V.3. As we may see, the four series are quite well 
correlated. The number of authors with a specific degree decreases as the degree gets bigger. 
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There are no evident outliers.  Perhaps the most interesting feature is the sudden drop in the 
number of authors for 1+ (having one or more) and 5+ (having five or more) in-degree and 
citations. This is not the case for out-degree or references. This means that 5 is quite a 
boundary for less and more cited authors. Also, the superiority of references over citations 
which begins with 10+ and terminates with 200+ indicates that the group of highly cited 
authors is greater than that of highly citing authors.  
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Figure V.3: Cumulative histogram showing distribution of in- and out-degrees in G.  

 
Distribution of c and b coefficients 
Figure V.4, Figure V.5, Figure V.6, and Figure V.7 show the cumulative distribution of 
various parameters defined in Section V.1 in the weights of edges in E of graph G. The size of 
the bin 0+ for each series of each graph would be 295 531, i.e. |E|. The number of edges in 
each 1+ bin is always 7 017 since this is the number of edges in E between authors that have 
some common publications. This number will never be exceeded by values of other 
parameters because in Section V.2 we have defined the parameters f, g, h, hd, t, td to be zero 
whenever c is zero. Now, let us make a few examples of interpretation of the data in the 
figures. For instance, the number of edges in E for which the parameter c is five or more is a 
little greater than one thousand. This means that there are some one thousand author pairs 
having five common publications at least that cite each other (not necessarily at the same 
time). The author pairs are ordered, so if the authors cite one another at the same time, i.e. 
there are two edges in E for this pair, the pair is counted twice. Another example: there are 
some 5 000 author pairs having some common publications whose sum of publications is 70 
at least (see Figure V.5). In Figure V.6, we can observe that there are no collaborating authors 
that would have 400 or more distinct co-authors in total. The bins 1+ and 2+ in Figure V.7 are 
the same because each common publication of two authors has two (distinct) co-authors at 
least. The largest number of author pairs have between five and ten distinct co-authors in their 
common publications (see Figure V.7). If we subtract the citing and the cited author, it is 
between three and eight. In general, it holds that f ≥ g, h ≥ hd, t ≥ td as the second parameter 
in the couple is always more restrictive.     
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Figure V.4: Cumulative distribution of values of parameter c in graph G.  
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Figure V.5: Cumulative distribution of values of parameters f and g in G. 
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Figure V.6: Cumulative distribution of values of parameters h and hd in G. 
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Figure V.7: Cumulative distribution of values of parameters t and td in G. 

 
Statistics of c and b coefficients 
To terminate this subsection, Table V.5 presents basic statistics of the c and b parameters in 
the weights of edges in graph G, which were commented on in the previous paragraphs. 
Parameter b is represented by the corresponding coefficients f, g, h, hd, t, and td as described 
in sections V.1 and V.2. Note that only those edges in E of G are considered for which c is 
non-zero, i.e. edges between authors who have some common publications. The number of 
these edges is 7 017 as mentioned above. Taking into account all of the edges in E would 
obviously decrease the mean values and set all medians and modes to zero. In total, we have 
found 10 902 author pairs having one common publication at least but not all of them have a 
citation edge in E, of course. Some interesting findings visible in Table V.5 include: i) the 
maximum number of distinct co-authors in common publications by two specific authors is 67 
(!), iii) the most frequent number of the same is three (rather low), iii) the maximum total 
number of publications (counted separately) of two collaborating authors is 489, etc. Much 
more analysis (such as component analysis) of the co-authorship and citations graphs could be 
done but it is not the aim of this thesis. 
 

 c f g h hd t td 
min 1 4 2 2 2 2 2 
max 56 489 443 977 355 210 67 
avg 2.93 139.83 120.87 295.26 122.41 14.80 7.99 
std. deviation  3.89 81.50 72.28 168.68 64.50 17.66 6.47 
median 2 130 111 273 114 9 6 
mode 1 153 134 188 59 3 3 

 

Table V.5: Basic statistics of weight parameters for edges in E with non-zero c. 
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V.3.3 Computing Ranks for Authors 
We exploited extensively the author citation graph G described in detail in Section V.3.2. 
Altogether, twelve ranking methods were employed to evaluate the authors. In addition to the 
weighted (citation counting) and unweighted in-degree, HITS authorities (see Section II.3), 
and the standard (unweighted) PageRank (see Section II.2), we also applied the weighted and 
the bibliographic (seven variants a) – g) from Section V.2) PageRank algorithms. In this way, 
we finally obtained twelve author rankings. The big problem that immediately arises is how to 
evaluate the quality of these rankings. The quality of a ranking is a highly subjective matter. 
A straightforward solution would be to compare the generated rankings with an official, 
“human-made” ranking. Unfortunately, this does not exist. Another possibility would be to 
make use of the various citation systems we talk about in Chapter IV and compare the new 
rankings with their citation-based rankings. The trouble here is that the citation data in DBLP 
is very incomplete and it is more or less concentrated on publications in a few particular 
journals and conferences. Thus, it would not be directly comparable.  
 
Awards 
It is remarkable in this context, that ACM SIGMOD Digital Review and ACM SIGMOD 
Record journals as well as the ACM SIGMOD Conference have their publications’ citations 
included. This was perhaps what initially triggered the idea in [Sidiropoulos2005] – namely to 
compare author rankings with lists of ACM SIGMOD award winners. Quite logically, the 
authors expected that award winners should be placed higher in their rankings than other 
authors. In other words, the better a ranking, the higher ranks it associates with award winning 
authors. As our approach is somewhat different from theirs (more on this will be said in 
Section V.4), the only award we can take advantage of is the ACM SIGMOD E. F. Codd 
Innovations Award [1], which is awarded “for innovative and highly significant contributions 
of enduring value to the development, understanding, or use of database systems and 
databases.”    
 
Program committees 
The only alternative approach to author ranking evaluation we are aware of is described in 
[Liu2005]. Here the newly derived rankings are compared to lists of program committee 
members (i.e. prestigious researchers) of conferences on digital libraries. A ranking with more 
authors being members of program committees is considered better than another one having 
only a few of them. This approach has two obvious drawbacks. First, it is domain specific. It 
is appropriate for rankings based on data from digital library conferences (as was the case). 
For other fields different program committees would have to be considered. But for general, 
non-specific data (more or less the case of DBLP) it is not reasonable. And second, actual 
ranks of authors are not taken account of. So two rankings with  the same authors in a 
different order would be evaluated the same. (Although this can be improved easily by 
comparing a series of ranks rather than single total scores.)  
 
Results 
We thus compared the ranks achieved by fifteen winners of the ACM SIGMOD E. F. Codd 
Innovations Award from the years 1992 – 2006. We also expected that better rankings would 
place award winners higher. Let us  have a look at Table V.6 with the actual ranks. The first 
three rankings (citations, in-degree and HITS authorities) are presented just for reference. The 
actual baseline ranking is “PR” (standard unweighted PageRank, in a darker column). In other 
words, the goal is to compare the new “bibliographic” PageRank rankings in columns “w” 
and “a” through “g” with the standard PageRank. The column “w” stands for the weighted 
PageRank from Section V.2 and “a” – “g” correspond to the variations a) – g) mentioned at 
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the very beginning of the same section. We can see that the weighted PageRank is much 
better than the classical one in terms of the sum of ranks (the smaller the better), the median 
rank and a little better as for the worst rank assigned to the award winners. The rankings “a” – 
“g” are always better than the standard PR regarding the sum of ranks and median rank and 
only “a” and “c” have a worse worst rank. The ranking “a” is also weaker than “w” in all 
metrics whereas “c” only with respect to the worst rank. The rankings “d” and “e” are the best 
in the sum of ranks and in the worst rank respectively. The median is better for “d” (9 versus 
12). Let us recall that this ranking penalizes authors frequently cited by their co-authors but it 
weakens this handicap if the citing and cited authors have many distinct co-authors altogether. 
Moreover,  the median rank 9 is the best of all in the table. Even the rankings not based on 
PageRank are worse in this respect.  
 
As we may observe, simple citations counting and in-degree perform best.  This is not 
astonishing since prestige, popularity, awards, and recognition generally still rely mostly on 
the number of an individual’s citations. What is more surprising is the very good result of 
HITS which is in contradiction with the conclusions taken by [Sidiropoulos2005].  However, 
their HITS ranking was not obtained in the same way as ours (see Section V.4). 
 
Year Author Cites  InDeg HITS PR w   a b c d e f g 
1992 Michael Stonebraker 1 1 1 3 2 2 1 1 1 1 3 3
1993 Jim Gray 4 3 4 6 3 6 2 2 2 4 1 2
1994 Philip Bernstein 6 8 7 4 6 5 6 6 4 6 5 4
1995 David DeWitt 2 2 2 36 14 20 3 3 3 2 4 5
1996 C. Mohan 36 47 45 113 110 116 62 59 65 65 105 101
1997 David Maier 13 11 11 51 35 47 7 7 6 7 11 13
1998 Serge Abiteboul 12 18 21 104 61 69 12 11 14 12 37 43
1999 Hector Garcia-Molina 9 12 18 60 49 62 4 4 5 3 16 14
2000 Rakesh Agrawal 11 15 25 65 58 64 16 19 18 15 49 49
2001 Rudolf Bayer 84 75 94 7 16 14 97 132 94 93 25 20
2002 Patricia Selinger 38 38 23 59 55 53 61 55 54 63 36 48
2003 Don Chamberlin 16 13 10 2 4 3 29 26 23 26 7 6
2004 Ronald Fagin 28 40 46 19 13 13 27 28 30 25 17 17
2005 Michael Carey 7 9 5 63 46 55 13 10 9 14 21 29
2006 Jeffrey D. Ullman 3 5 9 15 8 12 5 5 7 5 8 8

 Worst rank 84 75 94 113 110 116 97 132 94 93 105 101
 Sum of ranks 270 297 321 720 480 541 345 368 335 341 345 362
 Median rank 11 12 11 36 16 20 12 10 9 12 16 14

 

Table V.6: E. F. Codd Innovations Award winners and their ranks in distinct methods. 

 
Discussion of author ranks 
The accompanying chart of Table V.6 is in Figure V.8. We can easily capture the most 
significant trends there. The three lowest-ever ranked authors are Rudolf Bayer, C. Mohan, 
and Serge Abiteboul. At the same time, the positions of Rudolf Bayer and Serge Abiteboul 
are quite oscillating (both high and low ranks exist) whereas those achieved by C. Mohan 
remain more stable (rather low). There are two scientists who are always ranked in the top 10 
– Michael Stonebraker and Jim Gray. Nevertheless, these two researchers were awarded first 
– in 1992 and 1993, respectively. Thus, there has been time enough for them to profit from 
the award and to collect citations. In this context, the high ranks of the most recently awarded 
researcher, Jeffrey D. Ullman, are very remarkable. (Of course, he may have won another one 
from the many awards before.)  
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Figure V.8: E. F. Codd Innovations Award winners. 

 
Let us have a look at some particularities in Figure V.8. For instance, Rudolf Bayer has 
relatively few citations and few distinct citing authors (citations and in-degree), but he is cited 
mostly by authoritative researchers (“PR” and “w”) and not so much by his colleagues (“a”). 
Then he suddenly looses good positions which may indicate that his colleagues citing him 
have published rather little (“b” and “e”) and that they usually have few co-authors in their 
publications (“c” and “d”).  But the number of co-authors in the common publications with 
the researchers citing him is relatively high (“f” and “g”). Also, there is the biggest difference 
between “c” and “d” for Rudolf Bayer amongst all awarded authors. This may mean that there 
are less distinct co-authors in his publications (and/or in publications of his colleagues citing 
him) with respect to all co-authors than is the case with other award winners. It is somewhat 
inverse with Serge Abiteboul. He has many citations but is cited by less authoritative authors 
(a sudden drop with “PR”). However, if the frequency of endorsements is taken into account 
(“w”), Abiteboul’s rank improves considerably (from over 100 to almost 60), etc. Certainly, 
all of the above explanations are not exclusive because there may be many other factors 
affecting the ranks that we are even not aware of. Also keep in mind that the results are based 
on the very incomplete data we work with. We do not present individual statistics over 
rankings for each author here since the objective is to compare rankings rather than authors. 
 
Comparison of rankings 
There are a number of metrics for comparison of rankings. See [Sidiropoulos2006] for some 
of them. We will briefly discuss the outcomes of three metrics – two numerical and one 
graphical. In Table V.7 we can see the number of common elements in the top twenty authors 
of two particular rankings. For instance, the ranking by citations has 16 authors in common 
with the ranking by in-degree in the Top 20. The number of common authors varies between 
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five and twenty. Of course, it does not reveal anything about the order of authors. It just says 
that 16 authors are the same. Theoretically, the ordering could be inverse. Two pairs of 
rankings have a complete match – “w” and “a”, and “b” and “e”. Also “f” and “g” have a 
rather great match (19 authors in common). On the other hand, the least observable match is 
produced by the standard PageRank – it shares just five authors with each “b”, “c”, and “e”. 
We can notice that there is a set of pairs of “twin” rankings that match quite well each other: 
{citations, in-degree}, {“PR”, “w”}, {“b”, “e”}, {“ c”, “d”}, and {“f”, “g”}. The “twin” 
rankings are very close to each other in the definition of their coefficients, e.g. weighted or 
unweighted in-degree, co-authors or distinct co-authors, etc. This definition similarity results 
in the similarity of their top twenty authors. The only exception in this respect is the pair 
{“w”, “a”} that matches perfectly but whose definition is somewhat distinct. On the contrary, 
we may observe the smallest numbers between the rankings from {“b”, “c”, “d”, 
“e”}X{“PR”, “w”, “a”}. 
 
 Cites  InDeg HITS PR w a b c d e f g 

Cites X 16 14 7 9 9 14 14 15 14 12 12 
InDeg 16 X 16 9 10 10 12 12 13 12 13 13 
HITS 14 16 X 11 12 12 11 12 13 11 16 15 
PR 7 9 11 X 16 16 5 5 6 5 14 15 
w 9 10 12 16 X 20 7 7 8 7 16 17 
a 9 10 12 16 20 X 7 7 8 7 16 17 
b 14 12 11 5 7 7 X 18 17 20 11 10 
c 14 12 12 5 7 7 18 X 18 18 11 10 
d 15 13 13 6 8 8 17 18 X 17 12 11 
e 14 12 11 5 7 7 20 18 17 X 11 10 
f 12 13 16 14 16 16 11 11 12 11 X 19 
g 12 13 15 15 17 17 10 10 11 10 19 X 

 

Table V.7: Common elements in top 20 authors. 

 Cites  InDeg HITS PR w a b c d e f g 
Cites  X 0.9904 0.8666 0.8119 0.8207 0.8188 0.8189 0.8079 0.8199 0.8203 0.8253 0.8237 
InDeg 0.9904 X 0.8661 0.8178 0.8179 0.8163 0.8169 0.8072 0.8178 0.8180 0.8221 0.8207 
HITS 0.8666 0.8661 X 0.7748 0.7496 0.7483 0.6786 0.6379 0.6831 0.6866 0.7473 0.7496 
PR 0.8119 0.8178 0.7748 X 0.9806 0.9803 0.9168 0.8785 0.9213 0.9253 0.9751 0.9776 
w 0.8207 0.8179 0.7496 0.9806 X 0.9993 0.9520 0.9197 0.9557 0.9586 0.9968 0.9981 
a 0.8188 0.8163 0.7483 0.9803 0.9993 X 0.9452 0.9123 0.9491 0.9522 0.9938 0.9960 
b 0.8189 0.8169 0.6786 0.9168 0.9520 0.9452 X 0.9935 0.9992 0.9995 0.9665 0.9620 
c 0.8079 0.8072 0.6379 0.8785 0.9197 0.9123 0.9935 X 0.9921 0.9904 0.9376 0.9315 
d 0.8199 0.8178 0.6831 0.9213 0.9557 0.9491 0.9992 0.9921 X 0.9993 0.9700 0.9657 
e 0.8203 0.8180 0.6866 0.9253 0.9586 0.9522 0.9995 0.9904 0.9993 X 0.9722 0.9681 
f 0.8253 0.8221 0.7473 0.9751 0.9968 0.9938 0.9665 0.9376 0.9700 0.9722 X 0.9994 
g 0.8237 0.8207 0.7496 0.9776 0.9981 0.9960 0.9620 0.9315 0.9657 0.9681 0.9994 X 

 

Table V.8: Spearman correlation coefficients. 

 
The next comparison is based on the correlation between rankings. Table V.8 shows the 
Spearman correlation coefficients for each pair of rankings. They are all significant at the 0.01 
level. An alternative metric would be Kendall’s tau (see Section II.2.4). With this metric, we 
consider the ranks of all authors that have some in-degree. (It is 12 934 as we mention in 
Section V.3.2.) Thus, few matches in the Top 20 may be easily compensated for with matches 



Chapter V  Bibliographic PageRank 

 79 

of lower ranked researchers. All highly matching pairs of rankings from Table V.7 are 
represented by a large correlation coefficient. The highest correlation (0.9995) was measured 
between b and e where publications and “solo” publications are interchanged. On the other 
hand, the least correlation is reported between c and HITS (0.6379). However, the number of 
common top 20 authors is 12 which is by far not the worst. Evidently, there are many 
mismatches between lower-ranked scientists. The sector of small matches from Table V.7 has 
disappeared here. It seems that mismatches just accumulate in the upper part of rankings 
(which is more important than the lower one, though). 
 
Finally, let us  present a graphical representation called q-q plot. Ranks of authors generated 
by two different rankings are plotted against each other. Obviously, two perfectly matching 
rankings would produce a straight line. There are 68 ranking pairs, so it is impossible to show 
all charts. We have chosen four of them and show them in Figure V.10. The top-left and 
bottom-left charts are examples of highly matching “twin” rankings (“f” vs. “g” and “b” vs. 
“e”, respectively). The top-right plot is for the least correlating pair (HITS vs. “c”) and the 
bottom-right plot represents a “mediocre” ranking pair (namely “a” vs. “c”). 
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Figure V.9: Convergence rates of standard (PR), weighted (w) & bibliographic (a – g) PR. 

 
Convergence 
All in all, enhancing the citation graph with further bibliographic information proves to be 
very useful. The advantage over the standard PageRank is clear. Already assigning weights to 
the edges in the citation graph is very effective and adding data from the co-authorship 
network improves the results even more. The convergence rates of standard and bibliographic 
PageRanks are comparable. See Figure V.9 where the damping factor (d in equation (V.1)) is 
set to 0.9. The vertical axis in the figure represents the Spearman correlation coefficient 
between the rank vectors in the current and previous iteration. This simplified convergence 
criterion is often used instead of measuring the absolute error over rank scores (see Section 
II.2.4). In the single precision arithmetic (six or seven decimal digits), all algorithms converge 
in about ten iterations. Of course, the resulting rankings depend entirely on the structure of the 
citation and co-authorship graphs, i.e. on the DBLP data they are generated from. Remind that 
in our data collection, only 8 188 publications from the total 472 043 had references included. 
The rest could be used for the co-authorship graph only. Even though the DBLP collection 
dates from 2004, it still makes sense to take into account award winners from more recent 
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years because it usually takes a couple years for a publication to become cited and DBLP 
references to papers from years after 1997 are rather rare [Sidiropoulos2005]. The newest 
citing paper is from 2001 as pointed out in Section V.3.1. 
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Figure V.10: Some comparisons of rankings by means of q-q plots. 

 
Significance 
To show some statistical significance of the improvement of the results of the baseline PR 
method by the new rankings (see Table V.6), we would need to reject the null hypothesis H0: 
µPR - µNEW = 0, i.e. that the mean ranks of the baseline and of the new ranking are equal. 
However, to be able to perform such a test, the two rankings would have to be normal 
distributions, independent of each other, and their variances would have to be equal. At least 
the first two conditions are not satisfied. Therefore, we cannot say whether or not the 
improvements we have achieved are statistically significant. We can only demonstrate their 
practical significance. 
 
Prediction 
We show the top 40 authors for each ranking method in tables Table 1, Table 2, Table 3, and 
Table 4 in the appendix. E. F. Codd Award winners are in bold. Of course, the top ranked 
authors that have not yet been awarded have the greatest chance to win the award in future 
years. Raymond A. Lorie and Umeshwar Dayal appear among the best in each ranking. As the 
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awarding highly correlates with the ranking by citations, Won Kim is also a top candidate for 
the ACM SIGMOD E. F. Innovations Award in future years. (E. F. Codd himself died in 2003 
and cannot be awarded.) 

V.4 Related Work & Summary 
Sidiropoulos 
Sidiropoulos and Manolopoulos [Sidiropoulos2005] have proposed modifications of 
PageRank that would better meet needs for evaluating nodes in bibliographic networks. Their 
PageRank-based algorithm is called SCEAS Rank and is described in Section II.2.5. Although 
we adopted their testing methodology (DBLP and award winners) and tried our best for our 
results to be directly comparable, they are not. This has several reasons: 
 

1. Different data. Unfortunately, authors use DBLP data from January 14, 2005. These 
data were probably up-to-date when they conducted their experiments but they are 
obsolete now and, in addition, they are not publicly available. Had they worked with 
[2] instead, the input data would be the same and their results verifiable. 

2. No author citation graph. Only co-authorship graph GP and publication citation graph 
GC are constructed. All computations are performed upon GC and rankings for authors 
are obtained by averaging ranks of their publications.  

3. Not all publications considered. In addition, only the ranks of the 25 best-ranked 
publications of each awarded author are counted in for author ranks. The number 25 
was selected because it appeared to be the global optimum of SCEAS Rank. 

 
Evidently, the number of best publications selected can severely affect the ranking quality. If 
a global optimum for PageRank was chosen instead, one can assume that SCEAS Rank would 
come out much worse. Even for those 25 publications (optimal for SCEAS), PageRank has a 
smaller sum of ranks (200 against 207). The results of SCEAS would be comparable to ours if 
the ranks of all publications for each author were taken into account. The authors do not 
disclose these results. Working directly at the author level (and not at the publication level) 
avoids the problem of searching for the optimal number of best publications for authors (some 
authors may even not have the required number of publications) and, therefore, the resulting 
rankings are biased towards the method that the optimal number of top publications was 
selected for. Authors in [Sidiropoulos2006] try to amend the “number-of-publications” 
problem by aggregating the ranks of authors over several different numbers of top 
publications but still not all publications are considered which does not allow for an unbiased 
comparison of authors and methods. The inherent disadvantage of our author-level 
methodology is that it does not enable ranking publications.  
 
Bollen 
Liu, Bollen et al. [Liu2005] introduce co-authorship frequency and exclusivity computed 
from a co-authorship graph into PageRank (called AuthorRank) and rank authors from a few 
conferences on digital libraries. Co-authorship frequency and exclusivity are somewhat 
analogous to the c and t coefficients from Section V.1 and are explained in Section III.4.2. 
Their testing data originating from an undisclosed version of DBLP are rather small (759 
publications) and domain-specific. They compare their rankings with relevant program 
committee members and conclude that “the results of PageRank and AuthorRank are highly 
correlated, but there is no conclusive evidence that one performs better than the other.” 
However, they do not take advantage of distinct numbers of citations between authors, i.e. the 
parameter w from Section V.1 is always set to one in their method. Interestingly, they do this 
in [Bollen2006] for journal citation networks with a weighted PageRank algorithm. But no 
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co-authorship information was added to journals for obvious reasons. On the other hand, our 
“bibliographic“ PageRank exploits both the co-authorship and citation information from 
bibliographic networks in a generalized manner.  
 
Summary 
In this chapter, we presented several modifications of the classical PageRank formula adapted 
for bibliographic networks. Our versions of PageRank take into account not only the citation 
but also the co-authorship graph. We verified the viability of our algorithms by applying them 
to the data from the DBLP digital library and by comparing the resulting ranks of the winners 
of the ACM SIGMOD E. F. Codd Innovations Award. Rankings based on both the citation 
and co-authorship information turned out to be better than the standard PageRank ranking. In 
the future work, we would like to concentrate on the issue of incorporating the time factor in 
the bibliographic PageRank. For instance, a citation between two authors made after their 
collaboration would be considered as less valuable than another one made before it, etc. 
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VI Mining the Academic Web 

The succesful analysis of the well-structured DBLP data in the previous chapter invites us to 
try to discover authorities also in the world’s biggest repository of unstructured data – on the 
Web. In this chapter, we present a methodology and two case studies for finding authoritative 
researchers by analyzing academic Web sites. In the first case study, we concentrate on a set 
of Czech computer science departments’ Web sites. We analyze the relations between them 
via hyperlinks and find the most important ones using several common ranking algorithms. 
We then examine the contents of the research papers present on these sites and determine the 
most authoritative Czech authors. In the second case study, we do exactly the same with 
French academic computer science Web sites to find the most significant French researchers 
in the field. Unlike Chapter V, in which we work with quite non-noisy DBLP data, the results 
of the experiments we present in this chapter are inherently dependant on the structure and the 
content of the Web. Moreover, the Web data may be extremely noisy and biased. Thus, the 
outcomes should be considered as informative rather than conclusive. We also discuss the 
weak points of our approach and propose some future improvements. To the best of our 
knowledge, it is the only attempt ever made at discovering authoritative researchers from the 
above countries by directly mining from Web data. 
 
This chapter comprises two sections. Section VI.1 deals with the analysis of Czech and 
French Web sites  whereas Section VI.2 describes the process of examining the papers found 
thereon.   

VI.1 Mining the Structure 
The rapid growth of the Web has lead to fears of information explosion, excess, or flooding. 
There is too much information available, and we cannot handle all of it. The Web is a huge 
storehouse of data, information, and knowledge and in order to be able to get the maximum 
out of it, we must quickly recognize whether or not a source of information on the Web is 
valuable. Otherwise, we can easily waste our time studying Web documents that are irrelevant 
or of a poor quality. Like in the scientific literature where publications cite other publications, 
and we tend to refer to those highly cited ones, we prefer authoritative Web pages.  
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It is important for a Web surfer to search for information on quality pages to possibly gain 
advantage over others. It is no less relevant for a Web site creator to have his site perceived as 
valuable and thus attracting a larger number of visitors which may consequently imply a 
greater profit. Briefly, it is in the interest of the whole Web community to be capable of 
distinguishing between good and bad Web documents. In the Web domain, citations are links 
between Web pages or Web sites (when we talk about site level). Commercial Web search 
engines soon became aware of the potential of the Web link structure for the discovery of its 
authoritative resources, and a link-based quality judgement is a necessary complement of their 
content-based search techniques.  
 
Algorithms for these judgements may be recursive, such as PageRank [Brin1998, Page1999, 
Chakrabarti2002, pp. 209-212] or HITS [Chakrabarti1998, Gibson1998, Kleinberg1999b] or 
simple like In-Degree which just counts in-links. Some studies [Ding2001b, Ding2002] have 
shown that the rankings produced by the three algorithms are highly positively correlated, but 
it has been contested by other researchers [Pandurangan2002]. Recursive methods have a 
strong probabilistic background [Diligenti2004] and there exist many modifications, e.g. 
PageRank for bibliographic citations [Sidiripoulos2005, Sidiripoulos2006]. We refer to 
Chapter II for in-depth information on ranking algorithms. Closest to our work is the research 
in [Thelwall2001, Li2003] not further described here due to space limitations, but in addition 
to the relations between Web sites we also studied the contents of the documents found on 
them. Other authors have tried to determine the importance of Web sites of Universities rather 
than departments as we have done [3].  

VI.1.1 Czech University Computer Science Web Sites 
Our first objective was to determine authoritative institutions among Czech computer science 
University departments. We have chosen this area because we know it well and we could 
expect that there would be enough data on the Web to analyze. At the same time, we 
supposed the data volume to be easily manageable. Even though we limited our experiments 
by topic and scope, the methodology we used was sufficiently general to be able of applying  
to a completely different scientific field.  
 
Constraints 
We have selected seventeen computer science Web sites from a Web directory of Czech 
academic institutions. Our selection had several constraints. First, we wanted to take account 
of their geographic location so as to include various regions of the Czech Republic. Second, 
each department had to have its home page on its own server. That means, we did not 
consider home pages being on a URL’s path such as www.someuniversity.cz/somedepartment 
but only those like www.department.university.cz. Therefore, we had to eliminate 
departments whose home pages were located in their University domain, which was 
sometimes the case. 
 
The reason for this is the fact that stand-alone servers can be manipulated more easily by a 
machine. A Web spider recognizes quickly whether or not a link on a department’s Web page 
is internal (within department). No recognition of logical domains on Web sites is necessary, 
and we can get along without techniques similar to those in [Li2000], And third, we wanted 
the departments to correspond in the University hierarchy approximately to the level of our 
home department. This is somewhat tricky because not all of the Universities have the same 
structure of schools consisting of departments. For this reason, some institutions in our list are 
schools rather than departments. 
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Procedure 
In December 2005, we let our Web spider crawl all of the seventeen servers. The spider stored 
information about hyperlinks between Web pages on the servers to a database and built a 
corpus of downloaded documents for further analysis (see Section VI.2). We repeated the 
same procedure two more times in a-few-days intervals and the results we obtained remained 
almost unchanged. We show those from the last experiment in Table VI.1. 
 
We have to mention briefly a few Web crawling related issues which may have impact on the 
parameters we examined. We were interested only in links via the HTTP protocol and 
pointing to documents in certain formats. For instance, we did not consider video or audio 
documents, which is natural, but we also left out documents with extensions doc, rtf, txt, and 
ppt, which is more arguable. (However, taking account of these formats in one of the 
experiments caused only one change in the middle part of the chart in Table VI.1.) To prevent 
the spider from getting stuck in Web traps, we set the maximum depth of nesting in the Web 
graph to eight, which is empirically a good estimate for yielding reasonable results. 
(Documents in greater depths are usually duplicates with different names – URLs.)  
 
Results 
Our spider collected over 250 000 documents (in specific formats) and created a roughly 
7 GB corpus. We found about 3.3 million links to those documents within the set of servers. 
We removed duplicate links and self-links (intra-site links). Duplicate links have the same 
source and target URL; self-links have a source and a target within the same server. After 
removal, there were 1 850 links left. The sites in Table VI.1 are ordered descendingly by the 
number of in-links (citations). 
 
We can notice in Table VI.1 that the hosts are grouped into three clusters. At the top, there are 
three Web sites that are clearly ahead of the others. At the bottom, there are sites that have no 
or very few in-links. In between, there is the largest block of average departments. We show 
the number of the documents of our interest found on the individual servers as well. Of 
course, the number of in-links often depends on the number of documents on the target site. 
Their numbers vary greatly due to different sizes of hosting institutions (see also the 
constraints above), preference of various document formats and document generation 
(dynamic Web pages), etc. One way of tackling this problem is to normalize the number of 
citations somehow. For instance, it is possible to divide the number of citations by the number 
of documents on a particular site (the ratio in the last column of Table VI.1) or by the number 
of staff of the corresponding institution [Li2003]. In this context, it is interesting to note the 
very low total ratio. This means that in a closed set of Czech computer science institutions, 
the departments cite one another very rarely, which is somewhat astonishing. 
 
Issues 
There are some facts that may severely influence the ordering by in-links. One of them is the 
existence of server aliases. For instance, www.siteA.cz and www.siteB.zcu.cz is one machine 
with the same content. Thus, citations to both should be counted together. There may be a 
large number of aliases and ignoring them could lead to wrong results. It is not possible to 
replace host names with IP addresses either since more virtual servers can share one IP 
address. 
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Another problem is dynamically generated Web pages (see the Web site with a significantly 
higher number of documents). In such a case, two and more URLs (and two or more possible 
references) represent one document and citations should be counted only once then. This is 
very annoying, especially regarding the low inter-connectivity of the Web sites. Last but not 
least, there is a problem with document formats. If a server hosts documents in a format we 
ignore (e.g. rtf) to a greater extent than the other servers, it can automatically lose citations. 
All these issues (site mirrors, different site sizes, dynamic pages, etc.) must be taken into 
account when declaring the most authoritative institutions. 
 

Server # Docs # In-Links Ratio 
www.fi.muni.cz 15 438 924 0.0599 
iti.mff.cuni.cz 632 335 0.5301 
www.cs.vsb.cz 18 325 243 0.0133 
kam.mff.cuni.cz 10 952 69 0.0063 
www.kiv.zcu.cz 12 309 68 0.0055 
cs.felk.cvut.cz 16 422 56 0.0034 
kocour.ms.mff.cuni.cz 11 860 43 0.0036 
www.cs.cas.cz 3 226 37 0.0115 
www.fit.vutbr.cz 148 682 28 0.0002 
www.kin.vslib.cz 46 18 0.3913 
www.inf.upol.cz 1 230 13 0.0106 
ksvi.mff.cuni.cz 472 13 0.0275 
ktiml.ms.mff.cuni.cz 847 3 0.0035 
ki.ujep.cz 240 0 0 
kit.vse.cz 273 0 0 
ufal.mff.cuni.cz 8 316 0 0 
www.kai.vslib.cz 2 423 0 0 
Total 251 693 1 850 0.0074 

 

Table VI.1: Czech Web sites analyzed. 

 
Authoritative Institutions 
The relations between the examined servers from Table VI.1 are depicted in Figure VI.1. The 
citation network is a directed graph with edge weights set to in-link numbers. To enhance 
visual perception we use three types of edges – normal width lines (less than ten citations), 
medium width lines, and thick lines (more than 99 citations). By simply looking at the 
network, we can immediately identify two major candidates for the most important hosts – 
www.fi.muni.cz and www.cs.vsb.cz. To verify it, we took advantage of the methods from 
Chapter II. First, we computed in-degrees of the nodes in the citation graph without respect to 
edge weights (i.e. each edge has a weight of one). Note that the in-links in Table VI.1 are 
actually in-degrees respecting edge weights. Then, we computed HITS authorities for the 
graph nodes and, finally, we generated PageRanks (HostRanks, in fact) for all of the nodes. 
Table VI.2 summarizes the rankings produced by all four algorithms. 
 
We can see indeed that all four measures are strongly positively correlated. The hosts 
www.cs.vsb.cz and www.fi.muni.cz are in the top three servers whichever ranking method we 
applied; cs.felk.cvut.cz is highly ranked by In-Degree and HITS whereas www.cs.cas.cz is 
favoured by PageRank only. Number two by citations (in-links), iti.mff.cuni.cz, is 
handicapped by its strong support from more or less just one server as we may see in Figure 
VI.1. Naturally, the nodes (sites) with a zero in-degree end up at the bottom of each chart. 
Perhaps, we could prefer those with some out-links at least to those with a zero out-degree. 



Chapter VI  Mining the Academic Web 

 88 

These nodes with no in-links and out-links are entirely isolated and do not participate in the 
community. 
 

Site In-Links In-Deg HITS PageRank  
cs.felk.cvut.cz 6 3 1 4 
iti.mff.cuni.cz 2 6 5 6 
kam.mff.cuni.cz 4 7 – 8 8 7 
ki.ujep.cz 14 – 17 14 – 17 14 - 17 14 – 17 
kit.vse.cz 14 – 17 14 – 17 14 – 17 14 – 17 
kocour.ms.mff.cuni.cz 7 4 – 5 4 5 
ksvi.mff.cuni.cz 11 9 – 12 12 11 
ktiml.ms.mff.cuni.cz 13 13 13 12 
ufal.mff.cuni.cz 14 – 17 14 – 17 14 – 17 14 – 17 
www.cs.cas.cz 8 4 – 5 6 2 
www.cs.vsb.cz 3 1 – 2 2 1 
www.fi.muni.cz 1 1 – 2 3 3 
www.fit.vutbr.cz 9 7 – 8 7 8 
www.inf.upol.cz 11 9 – 12 10 9 
www.kai.vslib.cz 14 – 17 14 – 17 14 – 17 14 – 17 
www.kin.vslib.cz 10 9 – 12 11 13 
www.kiv.zcu.cz 5 9 – 12 9 10 

 

Table VI.2: Algorithms and rankings of Czech Web sites. 

 
Correlation  
Now that we have four different rankings: by in-links, in-degree (each edge has a weight of 
one), HITS (authority), and PageRank, we are interested in the correlations between these 
orderings. The Spearman correlation coefficients for each pair of rankings are presented in 
Table VI.3. They are all significant at the 0.02 level. The very high positive correlation 
between the four rankings was expected as it had already been reported before [Ding2001b, 
Ding2002].  
 

 In-Links  In-Degree  HITS PageRank  
In-Links  X 0.89 0.89 0.86 

In-Degree  0.89 X 0.96 0.96 
HITS 0.89 0.96 X 0.95 

PageRank  0.86 0.96 0.95 X 
 

Table VI.3: Czech rankings correlation. 

VI.1.2 French University Computer Science Web Sites  
In this section, we will describe our experiment with the Web sites of French computer 
science departments. This data collection was also in the field of interest of this dissertation’s 
author, but it was much larger than the Czech data set and, therefore, it required a different 
treatment. First, we had to draw up a list of laboratories. To do this, we looked up in Web 
directories and we also submitted queries to Web search engines. From these Web pages, we 
manually selected 80 final sites that constituted our set of departments. The selection was 
limited by the same constraints we discussed in the context of Czech Web sites. The first goal 
was to determine the most authoritative sites as of May 2006. 
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Procedure 
To accelerate the process of creating the Web graph, we did not make use of a Web spider of 
our own, but we took advantage of a service provided by the search engine Yahoo! We 
submitted to it queries  in this form: 
 

site:www.loria.fr linkdomain:www.irisa.fr 
 
which returns the number of documents on www.loria.fr containing at least one link to 
documents on www.irisa.fr. For us, it is a weight of the edge from www.loria.fr to 
www.irisa.fr. We had to construct 6 320 queries in this way. Of course, the construction and 
submission of queries, storing of results, and the graph creation were automated. (The 
complete figure of the Web graph with 393 edges is available on the accompanying CD and at 
[4]; its sketch without node labels and edge weights is in Figure VI.2.) 
 
The drawbacks of relying solely upon search engines are discussed a great deal in 
[Thelwall2001, Li2003]. The problem consists primarily in “instability” of the results. This 
means that the results obtained one day differ from those of another one. Another 
disadvantage is that the results are not transparent. We do not know which document formats 
are taken into account, how duplicate documents are treated, etc. 
 

 
 

Figure VI.2: Citation graph of French Web sites. 

 
Results and discussion 
Again, we applied the four ranking methods to the Web graph of 80 sites of choice. We can 
see the results in Table VI.4 and Table VI.5. The sites are sorted by in-links (citations), i.e. by 
the total number of links to this site from other sites in the set (with some limitations imposed 
by the search engine). The first place belongs to www-futurs.inria.fr, whose positions 
achieved by the other methods, though, are much worse. We can suppose that the reason for 
this is a very strong support from a particular site. (After inspecting the Web graph, we can 
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see that it is www.lifl.fr.) The following sites always have high ranks - www-sop.inria.fr, 
www.loria.fr, www.lri.fr and www.lifl.fr. We can surely consider them as authoritative. 
 
 

In-Links  Site In-Degree  HITS PageRank  
1 www-futurs.inria.fr  45 41 53 
2 www-sop.inria.fr  1 1 9 
3 www.loria.fr  1 5 3 
4 www.lri.fr  6 6 10 
5 www-rocq.inria.fr  13 12 28 
6 www.irisa.fr  4 3 18 
7 www.lifl.fr  5 7 4 
8 www.lix.polytechnique.fr  20 17 26 
9 dpt-info.u-strasbg.fr  39 53 43 

10 www.inrialpes.fr  6 8 2 
11 www.irit.fr  9 4 8 
12 www.liafa.jussieu.fr  13 15 39 
13 www.lirmm.fr  1 11 1 
14 www.labri.fr  13 13 30 
15 www-leibniz.imag.fr  10 14 13 
16 liris.cnrs.fr  13 16 11 
17 www.prism.uvsq.fr  13 25 5 
18 www.di.ens.fr  34 26 44 
19 www.lip6.fr  20 21 40 
20 www.laas.fr  6 2 27 
21 dep-info.u-psud.fr  61 58 69 
22 www-lil.univ-littoral.fr  25 34 35 
23 www-verimag.imag.fr  25 37 16 
24 www.i3s.unice.fr  25 31 7 
25 eurise.univ-st-etienne.fr  25 23 32 
26 www-lsr.imag.fr  34 26 37 
27 www.info.unicaen.fr  13 10 14 
28 www-timc.imag.fr  12 9 17 
29 www-sic.univ-poitiers.fr  45 46 50 
30 cedric.cnam.fr  25 22 38 
31 www.dil.univ-mrs.fr  39 54 25 
32 www-lmc.imag.fr  25 29 34 
33 www.info.univ-angers.fr  34 44 24 
34 lifc.univ-fcomte.fr  20 32 21 
35 eric.univ-lyon2.fr  10 19 6 
36 www-id.imag.fr  25 33 15 
37 www-lipn.univ-paris13.fr  13 24 29 
38 dept-info.labri.fr  25 18 36 
39 www.isima.fr  39 43 48 
40 sis.univ-tln.fr  20 28 12 

 

Table VI.4: Ranking of French Web sites (1 – 40). 
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In-Links  Site In-Degree  HITS PageRank  

41 www-clips.imag.fr 25 30 22 
42 www.lisi.ensma.fr 39 40 33 
43 www-info.iutv.univ-paris13.fr 61 69 72 
44 www.lif.univ-mrs.fr 34 36 31 
45 www.cril.univ-artois.fr 39 35 41 
46 www.li.univ-tours.fr 34 42 45 
47 citi.insa-lyon.fr 45 45 54 
48 deptinfo.unice.fr 39 38 46 
49 msi.unilim.fr 52 55 64 
50 www.iut-info.univ-lille1.fr 61 62 65 
51 www.lia.univ-avignon.fr 20 20 23 
52 lil.univ-littoral.fr 52 48 57 
53 lisi.insa-lyon.fr 45 39 47 
54 www.isc.cnrs.fr 45 71 19 
55 www.if.insa-lyon.fr 61 72 52 
56 sirac.inrialpes.fr 61 62 62 
57 phalanstere.univ-mlv.fr 45 65 20 
58 www.lalic.paris4.sorbonne.fr 45 47 61 
59 www.icp.inpg.fr 52 51 49 
60 www-valoria.univ-ubs.fr 52 57 51 
61 lihs.univ-tlse1.fr 52 48 60 
62 www.epita.fr 52 67 42 
63 llaic3.u-clermont1.fr 52 51 56 
64 lsiit.u-strasbg.fr 52 48 57 
65 liuppa.univ-pau.fr 52 56 66 
66 wwwhds.utc.fr 61 66 55 
67 www.depinfo.uhp-nancy.fr 61 68 59 
68 lrlweb.univ-bpclermont.fr 61 62 62 
69 www-lium.univ-lemans.fr 61 70 67 
70 www.dptinfo.ens-cachan.fr 61 58 68 
71 www.ai.univ-paris8.fr 61 58 69 
72 www.lita.univ-metz.fr 61 58 69 
73 dept-info.univ-brest.fr 73 73 73 
74 lina.atlanstic.net 73 73 73 
75 lis.snv.jussieu.fr 73 73 73 
76 psiserver.insa-rouen.fr 73 73 73 
77 www.listic.univ-savoie.fr 73 73 73 
78 www-info.enst-bretagne.fr 73 73 73 
79 www.info.iut.u-bordeaux1.fr 73 73 79 
80 www.info.iut-tlse3.fr 73 73 79 

 

Table VI.5: Ranking of French Web sites (41 – 80) 

 
 In-Links  In-Degree  HITS PageRank  

In-Links X 0.86 0.85 0.76 
In-Degree  0.86 X 0.96 0.91 

HITS 0.85 0.96 X 0.82 
PageRank  0.76 0.91 0.82 X 

 

Table VI.6: French rankings correlation. 
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The same difficulties as with the Czech sites persist – mirror sites, different logical Web sites 
(some departments may prefer separate sites for each of their projects), dynamic pages, etc. 
Moreover, some other errors introduced by the search engine may occur. The correlation 
between the individual rankings is rather high again (see Table VI.6).  
 

 in-links in-degree  out-links  out-degree  
sum 5 160 393 5 160 393
min 0 0 0 0
max 917 15 1 476 54
avg 64.50 4.91 64.50 4.91
std. deviation  138.17 4.04 213.68 10.84
median 20,5 4 4 1
mode 0 1 0 0

 

Table VI.7: Statistics of the French Web graph. 
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Figure VI.3: Cumulative distribution of degrees in the French Web graph. 

 
Let us comment on some properties of the Web graph of French sites. Some statistics is 
shown in Table VI.7. Alphabetically sorted sites with the exact numbers of in-links, in-
degree, out-links, and out-degree may be found in the appendix in Table 5 and Table 6. The 
Web graph has 80 nodes and 393 edges. 72 sites have some in-links, 55 sites have some out-
links. 49 nodes have both a non-zero in-degree and a non-zero out-degree. Two Web sites are 
entirely isolated – www.info.iut.u-bordeaux1.fr and www.info.iut-tlse3.fr. They have no in-
links as well as no out-links. The maximum in-degree (i.e. the maximum number of distinct 
sites citing a particular site) is 15 which is achieved by www.lirmm.fr, www.loria.fr, and 
www-sop.inria.fr. However, the maximum number of in-links to a site is much higher – 917 
of www-futurs.inria.fr. www.lifl.fr and www.lri.fr are the top sites as for the out-links and 
out-degree (1 476 and 54, respectively).The median number of in-links is about twenty. 
Figure VI.3 shows the cumulative distribution of degrees in the French Web graph. If we have 
a more closer look at the sites that have much more in-links that out-links, these are www-
futurs.inria.fr, www-rocq.inria.fr, www.lix.polytechnique.fr, dpt-info.u-strasbg.fr, 
www.inrialpes.fr, and www.liafa.jussieu.fr. The only Web sites that has strikingly more out-
links than in-links is lsiit.u-strasbg.fr. (Though the two Strasbourg sites are more or less 
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complimentary.) The site with the most balanced relation between in-links and out-links is 
www.loria.fr (460 vs. 501). 

VI.2 Mining the Content 
The phase of finding significant institutions enables us to reduce the set of Web sites that we 
are going to analyze in the next stage in Section VI.2. For example, we might discard the last 
four sites in Table VI.1 or the last eight sites in Table VI.5, i.e. the least important sites. 
However, our case studies (Czech and French academic computer science Web sites) have 
still sufficiently small data sets so that no reduction is necessary. However, it might be 
inevitable with some very large data, such as American university Web sites. Measuring the 
quality of academic institutions with webometric tools is justified in [Li2003], where Web-
based rankings correlated with official rankings.  

VI.2.1 Czech Researchers 
In addition to studying links in a collection of computer science Web sites, we were also 
interested in the documents themselves found on these Web sites. Thus, besides files 
containing hyperlinks (mainly HTML documents), we downloaded potential research papers 
as well. In practice, that meant collecting PDF and PostScript files because most research 
publications publicly accessible on the Web are in these two formats. First, we had to pre-
process our download corpus. We unpacked archives and converted observed files to plain 
text via external utilities. So, at the beginning, we had a 12 thousand set of potential research 
papers. We discarded duplicates and examined the remaining documents. We used a simple 
rule to categorize the documents. In case they included some kind of references section they 
were considered as papers. In this way, we obtained some 3 600 papers in the end, i.e. over 
eight thousand documents did not look like research articles. 
 
Information extraction 
The next task is to extract information from the papers needed for citation analysis, i.e. names 
of authors, titles of papers, etc. We employ the same methodology with use of Hidden 
Markov Models (HMM) as that of McCallum and his colleagues [McCallum1999a, 
McCallum1999b, Seymore1999, McCallum2000]. A description of their approach is outside 
of the scope of this thesis. The difference is that we work with complete papers, not just with 
pre-processed headers and references. Moreover, the resulting text files analyzed by HMMs 
may often have been incorrectly converted to text before. Existence of diacritics in the Czech 
spelling also worsens the extraction. We did not measure the extraction accuracy due to lack 
of testing objects but, for the above reasons, we suppose it to be significantly lower than those 
90 - 93% reported in [Seymore1999]. 
 
We stored the information to a database for a comfortable subsequent querying. The author 
citation graph G had over 28 000 non-isolated nodes and roughly 195 000 edges. Authors 
were represented by their surnames and their first name and, when applicable, middle name 
initials. Strictly said, words identified as surnames. Of course, many of these words were not 
surnames (they were incorrectly classified) or they were foreign surnames of international 
authors. From the citation graph with “surnames” as graph nodes we determined the most 
authoritative Czech authors using the three different ranking methods. (The recognition of a 
Czech surname was done manually for the top authors.) See Table VI.8 for details. 
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Rank In-Degree HITS PageRank 
1 Nešetřil J Jančar P Nešetřil J 
2 Jančar P Nešetřil J Jančar P 
3 Hajič J Kučera A Kučera A 
4 Kučera A Pala K Pultr A 
5 Matoušek J Hajič J Pala K 
6 Panevová J Oliva K Smrž P 
7 Pala K Panevová J Hajič J 
8 Sgall P Matoušek J Panevová J 
9 Kratochvíl J Kratochvíl J Matoušek J 

10 Oliva K Sgall P Sedláček R 
 

Table VI.8: Ten most authoritative Czech CS researchers. 

 
Let us underline several facts. First, we did not disambiguate the names. Thus, a couple of 
authors may actually be represented by one name. Even adding first names does not resolve 
this problem. In addition, references in papers usually do not refer to full author names but to 
initials and surnames only. Thus, some mapping between these “short” names and full names 
is necessary. We contented ourselves with reducing even the full names in paper headers to 
short names and accepting some information loss. One solution of author disambiguation 
would be to cluster authors according to their co-authors or publication topics as it is done in 
[Han2005]. Authors report that this method works well with European (English) names but it 
achieves accuracy of only 60 – 70% with Chinese names. Second, duplicate citations are 
handled only in the sense that we remove duplicate documents before analysis. We do not 
examine whether two or more papers having perhaps only small differences are one 
publication in reality. Their references to another paper are counted separately. 
 
Third, Czech names often contain diacritics. In international publications written in English, 
though, diacritics are left out sometimes. The spelling is not unified. Furthermore, conversion 
to plain text from PDF and PostScript files does not work well and produces more variants of 
one name. For instance, we found seven commonly used variations of the name “Hajič” in our 
database. In other words, names with no diacritics in their original spelling have a better 
chance to have their citations counted correctly. For all the surnames in Table VI.8, we tried 
to include their frequent versions in citations. The two-way name ambiguity (one author may 
be known under more names and one name may represent a couple of authors) is to be 
reflected in future improvements. For all these reasons, the actual citation numbers are less 
interesting than the ranking itself. Let us not forget that the ranking is a result of those 3 600 
papers we got. The question is how it would change if more papers were analyzed. 
 
Discussion 
Again, no duplicate edges and self-citations were allowed in the citation graph of authors. The 
only two authors occurring among the top three researchers for each method are “Nešetřil J” 
and “Jančar P”. Other highly ranked names include “Kučera A” or “Hajič J”. Some of the 
names (such as “Kučera”, “Matoušek”, or “Sedláček”) are very frequent Czech names and 
they might require further disambiguation even if we know the domain (computer science) 
and the first name initial. 
 
Looking mostly just at the first page of results returned by a search engine we can make a 
guess about the probable affiliations of the authors. For example, for “Hajič” we got 



Chapter VI  Mining the Academic Web 

 95 

ufal.mff.cuni.cz, for “Kučera” we obtained www.fi.muni.cz and kam.mff.cuni.cz, and for 
“Matoušek” we got kam.mff.cuni.cz and www.fit.vutbr.cz. When comparing the sites of these 
authoritative researchers to those in Table VI.8, we may observe that ufal.mff.cuni.cz, 
kam.mff.cuni.cz, and www.fit.vutbr.cz have no high positions there. Only www.fi.muni.cz is 
ranked high. Therefore, it is unclear what impact highly cited authors have on the importance 
of their institutions’ Web sites. It would have to be submitted to an extensive research. 

VI.2.2 French Researchers 
We also gradually crawled all of the French sites and thus obtained a nearly 40 GB corpus of 
downloaded documents. So, at the beginning, we had about 45 thousand potential research 
papers. We treated them in the same way as the “Czech” articles and we obtained some 
16 000 papers in the end. The final citation graph of authors G (without duplicate edges and 
self-citations) had almost 86 000 non-isolated nodes and about 477 000 edges. Unlike the 
Czech authors in Section VI.2.1, surnames alone did not turn out to be very discriminative. 
Thus, authors were represented by surnames and initials of their first and middle names. See 
Table VI.9 for details. 
 

Rank In-Degree HITS PageRank 
1 Halbwachs N Halbwachs N Cahon S 
2 Caspi P Caspi P Berry G 
3 Sifakis J Sifakis J Filiol E 
4 Berry G Berry G Halbwachs N 
5 Benveniste A Benveniste A Zhang Z 
6 Abiteboul S Nicollin X Benveniste A 
7 Maler O Cousot R Lavallée S 
8 Nicollin X Raymond P Dombre E 
9 Cousot P Cousot P Boudet S 

10 Cousot R Abiteboul S Dégoulange E 
11 Raymond P Maler O Gourdon A 
12 Bouajjani A Asarin E Abiteboul S 
13 Asarin E Comon H Charpin P 
14 Comon H Bouajjani A Carlet C 
15 Zhang Z Coupaye T Cohen G 
16 Berstel J Berstel J Troccaz J 
17 Meyer B David B Abdalla M 
18 Florescu D Arnold A Payan Y 
19 Baccelli F Pilaud D Cousot R 
20 Leroy X Bruneton E David R 
21 Bruneton E Maraninchi F Cousot P 
22 Flajolet P Meyer B Caspi P 
23 Arnold A Leroy X Sifakis J 
24 Graf S Bensalem S Deransart P 
25 Cohen J Graf S Maler O 
26 Coupaye T Tripakis S Bouajjani A 
27 Pilaud D Lakhnech Y Dubois D 
28 Lakhnech Y Bozga M Caron P 
29 David R Gautier T Pierrot F 
30 Faugeras O Liu J Raymond P 

 

Table VI.9: Authoritative French CS researchers. 
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Results and discussion 
The rankings produced by In-Degree and HITS are very similar (the top five researchers are 
exactly the same) whereas that by PageRank is rather different. The authors in In-Degree and 
HITS are more or less the same (only in various positions), but PageRank introduces some 
new names. However, there are two authors (“Halbwachs N” and “Berry G”) occurring in top 
five of each ranking. We can certainly call these researchers authorities. 
 
Deciding whether or not a researcher is French is inherently subjective. Our decision was 
based on searching with several general and specialized search engines. Ideally, we found the 
researcher’s home page hosted by a French Web site or affiliation to a French institution 
given in an article. Of course, by French authors we also mean those who had lived and 
worked in France for a long time. We are aware that this feature is particularly fuzzy. Even 
with first name initials there are certainly more individuals with the same name. Again, the 
question is how the rankings would change if more than those 16 000 papers were analyzed. 

VI.3 Summary & Future Work 
Summary 
Notions of popularity or authority, commonly used in social networks such as scientific 
publications, have also been adopted for the World Wide Web in recent years. The most 
popular ranking techniques are link-based methods like In-Degree, PageRank, and HITS. We 
present a methodology and two case studies of finding authoritative researchers on the Web. 
We applied these algorithms to a set of Czech and a set of French academic computer science 
Web sites and determined the most authoritative ones within each set. (We also tried to 
examine Slovak computer science departments, but the data set was too small.) 
 
This step normally enables reducing the volume of data to be analyzed since we could 
continue finding researchers on the more important sites only. Further, we analyzed the 
research papers publicly available on the sites and we determined the most significant 
researchers by applying several ranking techniques to the citation graph. The method is a 
relatively objective means of presenting facts, but the interpretation is necessarily subjective. 
The results we achieved are not quite reliable due to the constraints and problems mentioned 
above, but we believe that our methodology is practical as we have shown in our experiments. 
 
International authors 
Unlike Section V.3.2, we do not provide exact information on the co-authorship and citation 
graphs (including statistics and histograms) in Section VI.2. Neither do we present the results 
of the PageRank-based methods introduced in Chapter V. We are aware that the Web-based 
bibliographic data are very incomplete and inaccurate. There is a great deal of noise. 
Therefore, it does not make much sense to attempt to be too accurate in this case. Even the 
rankings in Table VI.8 and in Table VI.9 should be considered as a hint rather than some 
precise measurements. However, all this information may be found on the accompanying CD 
including the complete graphs and rankings in the form of database tables. 
 
To allow for some minimum comparison at least, Table 7 in the appendix shows top 40 
international authors  for three basic ranking methods applied to both the Czech and the 
French corpus. There are names of authors of all nationalities without diacritics and only with 
some evident inaccuracies removed. We summarize the numbers of common researchers in 
the Top 40 for each pair of rankings in Table VI.10. Apparently, rankings based on one 
corpus tend to be more similar than those from two corpora. The largest intersection is 
between HITS and in-degree rankings for each corpus (29 common scientists in the Czech 
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data and 32 in the French corpus). On the other hand, there is hardly any intersection between 
PageRank from one country and other methods from the other country. Nevertheless, there 
are a couple of authors who occur at the top in both countries – “Bouajjani A”, “Ullman J D”, 
and “Vardi M”. These scientists seem to be regarded as authoritative by both Czech and 
French computer science researchers. In addition, “Ullman J D” is one of the ACM SIGMOD 
E. F. Codd Innovations Award winners (see Section V.3). Another award winner is 
“Abiteboul S’ who appears among the top authors in the French corpus only. 
 

 CZ InD CZ HITS CZ PR FR InD FR HITS FR PR 
CZ InD X 29 16 5 4 1 

CZ HITS 29 X 14 5 3 2 
CZ PR 16 14 X 0 0 0 
FR InD 5 5 0 X 32 11 

FR HITS 4 3 0 32 X 9 
FR PR 1 2 0 11 9 X 

 

Table VI.10: Common authors in Top 40. 

 
Future work 
In the future, we would like to have yet another ranking for institutions based on citations in 
papers. This would mean enhancing assigning affiliations to each researcher. We will be 
interested in the difference between the top ranked sites determined via analysis of Web links 
on one hand and those based on paper citations on the other hand. We would like to discover   
any   correlation   between  the  link-based (Web) and citation-based (papers) ranking. The 
social networks formed by academic institutions and by their research publications are 
assumed to be different. They are each destined for a distinct audience. Nevertheless, in our 
future research we would like to concentrate on the issue of combining Web and paper 
authorities. The methodology we have developed is general, which will enable us to focus on 
other areas of the Web as well. 
 
To the best of our knowledge, the two case studies presented above are the first attempt ever 
made at finding authoritative researchers in those two countries by directly mining from 
unstructured Web data.  
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Conclusions 
Web mining is an exciting area of research. Although quite new (who has heard of it fifteen 
years ago?), it has been subject to study to such extent in recent years that the body of 
knowledge is growing constantly and so fast that survey articles and books do not catch up 
with covering this topic. It spans across many scientific disciplines including artificial 
intelligence, machine learning, data mining, knowledge acquisition, information retrieval, 
graph theory and others. It borrows concepts and techniques from these domains, and it 
enriches them with novel methods, algorithms,  approaches, and empirical observations that 
turn out to be of a more general interest. Perhaps the most interesting finding so far of 
studying the Web is that it is developing into something more than we hoped. The patterns 
and regularities discovered in its scope, content, structure, usage, and behaviour disclose 
something amazing. It is no more just a network of documents. It is a kind of living organism. 
How will it evolve in the future? Is there something more we could know about it? With the 
arrival of Web 2.0 and the semantic Web even more space for research will be available, and I 
predict that, in the next decade at least,  the study of Web mining techniques will be no less 
challenging than it has been until now. 
 
Disclaimer 
The eminent feature of the Web that excludes direct applications of classic information 
retrieval processes is its volatility and infinity. Web documents and links between them may 
change on a daily basis or even more often, and the Web sample we are analyzing is always 
“a picture of the past”. It is never the true, real Web of a given moment, and it must be treated 
as such. We can never know precisely how much of the information on the Web we actually 
have at our disposal, how much is still hidden and yet to be discovered, and, therefore, we can 
never measure recall, a fundamental metric in information retrieval, but only make a guess 
about it. Another characteristic is its decentralized and “democratic“ nature. It is a product of 
millions of humans and human-controled machines that can, more or less arbitrarily, modify 
its content and structure. There is no regulatory body, and it governs itself. As in each 
democracy, there is some self-control, but discrepancies are common. Therefore, all the 
knowledge mined form the Web is affected by the factors above, and we should avoid to draw 
too far-reaching conclusions from it. 
 
Main contributions 
In this doctoral dissertation, I concentrated on the issue of mining the Web structure in order 
to find authoritative sources. Besides surveying the current  progress in related areas such as 
Web models, crawling techniques, ranking algorithms, and social networks, I made the 
following research contributions: 
 

• PageRank for bibliographic networks. I proposed a modification of the well-known 
PageRank equation, this time suited for graphs of  citations between publications and 
collaborations between authors. I extended and generalized the notions of 
collaboration frequency and co-authorship exclusivity by Liu, Bollen et al. by deriving 
them directly from the co-authorship graph and combining them with the information 
from the citation graph. Intuitively, this enables to rank authors “more fairly” by 
significance taking into account not only citations but also collaborations between 
them. In total, I proposed seven variants of the “bibliographic PageRank” formula. To 
test this new approach on real and non-noisy data, I applied the ranking algorithms to 
a data set from the DBLP digital library and used the methodology of Sidiropoulos 
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and Manolopoulos for ranking comparisons. I compared author rankings to a list of 
ACM SIGMOD E. F. Codd Innovations Award winners and found out that the new 
rankings reflected much better the prize awarding scheme than the baseline, 
“standard” PageRank ranking. It is not possible to compare directly my results with 
those of Sidiropoulos et al., because they utilized a slightly different data set and their 
method is primarily destined for publications, not for authors. This research 
contribution is described in Chapter V. 

 
• Mining the Czech and French academic Web. I attempted to determine 

authoritative institutions from two collections of Czech and French computer science 
University Web sites by applying some well-known methods for exploiting the Web 
structure. Furthermore, I analyzed the contents of documents found on these Web 
sites, more specifically of research papers. Using existing techniques of information 
extraction, I found out the most significant Czech and French computer science 
researchers that can be retrieved from documents available on the Web. The approach 
I brought into play is not new but the application and synthesis of several data mining 
processes yes. The results are certainly influenced by the limitations I faced and the 
selections I made. Especially the data for author retrieval is quite noisy, and I even do 
not present all the results, although they are all available on the CD accompanying this 
thesis. Detection of authoritative sites and authors may be helpful to decision makers 
and funding agencies  in their personal and financial policies. To the best of my 
knowledge, my experiments are the first attempts published at finding influential 
Czech and French computer science authors by directly mining from Web data. This 
research is close to the work of Mike Thelwall in some aspects and is explained in 
Chapter VI. 

 
Future work 
My research efforts are far from being accomplished. As their natural continuation I see in 
particular: 
 

• Stability and sensitivity analysis. Analysis of stability and sesitivity of the 
bibliographic PageRank formula (5.2) to small perturbations in the citation and/or co-
authorship graph would be desirable. Although the standard PageRank has been 
shown to be relatively stable (see Section II.2.6), the larger number of parameters 
involved in the calculation of (5.2) may negatively  affect this property. 

 
• Inclusion of time. The concept of a “fairer” ranking of researcher based not only on 

citations but also on collaborations invites the inclusion of the time factor. A citation 
between two scientists should certainly have a different meaning when it is made after 
their co-authorship of many articles or long before they get to know each other. This 
enhancement might add even more “justice” to the ranking. 

 
• Comparison of Web-based and paper-based authorities. The ranking of institutions 

represented by their Web sites in Section VI.1 is based purely on Web links. It would 
be interesting to associate affiliations with authoritative researchers from Section VI.2 
and to compare the two institutional rankings. I also see a great potential of the 
CiteSeer data (see Section IV.2) with affiliations already assigned, which may be 
useful for this purpose as well.  

 
 



 

 100 

References 
 
Printed 
 
[Abiteboul2003] Abiteboul S., Preda M., Cobena G. Adaptive on-line page importance 

computation. Proceedings of the 12th international conference on 
World Wide Web (WWW’03), Budapest, Hungary, pp. 280-290, 2003. 

[Aiello2000] Aiello W., Chung F., Lu L. A random graph model for massive graphs. 
Proceedings of the 32nd annual ACM symposium on Theory of 
computing, Portland, Oregon, USA, pp. 171-180, 2000. 

[An2004] An Y., Janssen J., Milios E. E. Characterizing and Mining the Citation 
Graph of the Computer Science Literature. Knowledge and 
Information Systems, vol. 6, no. 6, pp. 664-678, 2004. 

[Baeza-Yates2004] Baeza-Yates R., Castillo C. Crawling the infinite Web: five levels are 
enough. Proceedings of the third Workshop on Web Graphs (WAW), 
Rome, Italy, Lecture Notes in Computer Science, Springer, vol. 3243, 
pp. 156-167, 2004. 

[Baeza-Yates2005] Baeza-Yates R., Castillo C., Marín M., Rodríguez A. Crawling a 
country: better strategies than breadth-first for web page ordering. 
Proceedings of the 14th international conference on World Wide Web 
(WWW 2005), Chiba, Japan, pp. 864-872, 2005. 

[Balmin2004] Balmin A., Hristidis V., Papakonstantinou Y. ObjectRank: Authority-
Based Keyword Search in Databases. Proceedings of the 30th 
International Conference on Very Large Data Bases (VLDB 2004), 
Toronto, Canada, pp. 564-575, 2004. 

[Bani-Ahmad2005] Bani-Ahmad S., Cakmak A., Özsoyoglu G., Al-Hamdani A. 
Evaluating Publication Similarity Measures. IEEE Data Engineering 
Bulletin, vol. 28, no. 4, pp. 21-28, 2005. 

[Barabási1999] Barabási A. L., Albert R. Emergence of Scaling in Random Networks, 
Science, vol. 286, no. 5439, pp. 509-512, 1999. 

[Berkhin2005] Berkhin P. A Survey on PageRank Computing. Internet Mathematics, 
vol. 2, no. 1, pp. 73-120, 2005. 

[Bharat2000] Bharat K., Bröder A., Dean J., Henzinger M. R. A comparison of 
techniques to find mirrored hosts on the WWW. Journal of the 
American Society for Information Science, vol. 51, no. 12,                
pp. 1114-1122, 2000. 

[Bianchini2005] Bianchini M., Gori M., Scarselli F. Inside PageRank. ACM 
Transactions on Internet Technology, vol. 5, no. 1, pp. 92-128, 2005. 

[Boldi2004a] Boldi P., Santini M., Vigna S. Do your worst to make the best: 
Paradoxical effects in pagerank incremental computations. 
Proceedings of the third Workshop on Web Graphs (WAW), Rome, 
Italy, Lecture Notes in Computer Science, Springer, vol. 3243,           
pp. 156-167, 2004. 

[Boldi2004b] Boldi P., Codenotti B., Santini M., Vigna S. UbiCrawler: a scalable 
fully distributed Web crawler. Software Practice and Experience,      
vol. 34, no. 8, pp.711-726, 2004. 

[Bollen2006] Bollen J., Rodriquez M. A., Van de Sompel H. Journal status. 
Scientometrics, vol. 69, no. 3, pp. 669-687, 2006. 



 

 101 

[Bordons2002] Bordons M., Fernández M. T., Gómez I. Advantages and limitations in 
the use of impact factor measures for the assessment of research 
performance in a peripheral country. Scientometrics, vol. 53, no. 2, pp. 
195-206, 2002. 

[Bornmann2005] Bornmann L., Daniel H.-D. Does the h-index for ranking of scientists 
really work? Scientometrics, vol. 65, no. 3, pp. 391-392, 2005. 

[Bornmann2007] Bornmann L., Daniel H.-D. What do we Know About the h Index? 
Journal of the American Society for Information Science and 
Technology, vol. 58, no. 9, pp. 1-5, 2007. 

[Bouklit2005] Bouklit M., Mathieu F. BackRank: an alternative for PageRank? 
Proceedings of the 14th international conference on World Wide Web 
(WWW 2005), Chiba, Japan, pp. 1122-1123, 2005. 

[Braun2006] Braun T., Glänzel W., Schubert A. A Hirsch-type index for journals. 
Scientometrics, vol. 69, no. 1, pp. 169-173, 2006. 

[Brin1998] Brin S., Page L. The Anatomy of a Large-Scale Hypertextual Web 
Search Engine. Proceedings of the 7th World Wide Web Conference, 
pp. 107 – 117, 1998. 

[Bröder1997] Bröder A., Glassman S. C., Manasse M. S., Zweig G. Syntactic 
clustering of the Web. Computer Networks and ISDN Systems, vol 29, 
no. 8-13, pp. 1157-1166, 1997. 

[Bröder2000] Bröder A., Kumar R., Maghoul F., Raghavan P., Rajagopalan S., Stata 
R., Tomkins A., Wiener J. Graph structure in the Web. Computer 
Networks vol. 33, no. 1-6, pp. 309–320, 2000. 

[Burner1997] Burner M. Crawling towards Eternity. Web Techniques, vol. 2, no. 5, 
pp. 37-40, 1997. 

[Cai2005] Cai D., Shao Z., He X., Yan X., Han J. Community Mining from Multi-
relational Networks. Proceedings of the 9th European Conference on 
Principles and Practice of Knowledge Discovery in Databases (PKDD 
2005), Porto, Portugal, pp. 445-452, 2005. 

[Chakrabarti1998] Chakrabarti S., Dom B. E., Gibson D., Kumar R., Raghavan P., 
Rajagopalan S., Tomkins A. Spectral Filtering for Resource 
Discovery. Proceedings of the ACM SIGIR Workshop  on Hypertext 
Information Retrieval on the Web, Melbourne, Australia, pp. 13-21, 
1998. 

[Chakrabarti1999] Chakrabarti S., van den Berg M., Dom B. Focused Crawling: A New 
Approach for Topic-Specific Resource Discovery. Computer Networks, 
vol. 31, no. 11-16, pp. 1623-1640, 1999.  

[Chakrabarti2002] Chakrabarti S. Mining the Web: Analysis of Hypertext and Semi 
Structured Data. Morgan Kaufmann Publishers, San Francisco, 
California, USA, 2002. 

[Chakrabarti2006] Chakrabarti D., Faloutsos C. Graph mining: Laws, generators, and 
algorithms. ACM Computing Surveys, vol. 38, no. 1, 2006. 

[Chau2003] Chau M., Chen H. Comparison of three vertical search spiders. 
Computer, vol. 36, no. 5, pp. 56-62, 2003. 

[Chen1999] Chen C., Carr L. Trailblazing the Literature of Hypertext: Author Co-
Citation Analysis (1989-1998). Proceedings of the 10th ACM 
Conference on Hypertext and Hypermedia: Returning to Our Diverse 
Roots (Hypertext ’99), Darmstadt, Germany, pp. 51-60, 1999. 

[Cho1998] Cho J., Garcia-Molina H., Page L. Efficient Crawling Through URL 
Ordering. Proceedings of the 7th international conference on the 



 

 102 

World Wide Web (WWW7), Brisbane, Australia, pp. 161-172, 1998. 
[Cho2000] Cho J, Shivakumar N., Garcia-Molina H. Finding Replicated Web 

Collections. Proceedings of the 2000 ACM SIGMOD International 
Conference on Management of Data, Dallas, Texas, USA, pp. 355-366, 
2000. 

[Cho2002] Cho J., Garcia-Molina H. Parallel crawlers. Proceedings of the 11th 
international conference on the World Wide Web (WWW’02), 
Honolulu, Hawaii, USA, pp. 124-135, 2002. 

[Cunningham1997] Cunningham S. J., Dillon S. M. Authorship patterns in information 
systems. Scientometrics, vol. 39, no. 1, pp. 19-27, 1997. 

[Desikan2005] Desikan P. K., Pathak N., Srivastava J., Kumar V. Incremental page 
rank computation on evolving graphs. Proceedings of the 14th 
international conference on World Wide Web (WWW 2005), Chiba, 
Japan, pp. 1094-1095, 2005. 

[Diligenti2000] Diligenti M., Coetzee F., Lawrence S., Giles C. L., Gori M. Focused 
crawling using context graphs. Proceedings of the 26th International 
Conference on Very Large Data Bases (VLDB 2000), Cairo, Egypt, 
pp. 527-534, 2000. 

[Diligenti2004] Diligenti M., Gori M., Maggini M. A Unified Probabilistic Framework 
for Web Page Scoring Systems. IEEE Transactions on Knowledge and 
Data Engineering, vol. 16, no. 1, pp. 4–16, 2004. 

[Dill2002] Dill S., Kumar R., McCurley K. S., Rajagopalan S., Sivakumar D., 
Tomkins A. Self-Similarity In the Web. ACM Transactions on Internet 
Technology, vol. 2, no. 3, pp. 205-223, 2002. 

[Ding2001a] Ding C., He X., Husbands P., Zha H., Simon H. Link Analysis: Hubs 
and Authortities on the World Wide Web. Lawrence Berkeley National 
Laboratory, University of California, Berkeley, California, USA, 
Technical Report 47847, May 2001. 

[Ding2001b] Ding C., He X., Husbands P., Zha H., Simon H. PageRank, HITS and 
a Unified Framework for Link Analysis. Lawrence Berkeley National 
Laboratory, University of California, Berkeley, California, USA, 
Technical Report 49372, Nov. 2001. 

[Ding2002] Ding C., He X., Husbands P., Zha H., Simon H. PageRank, HITS and a 
Unified Framework for Link Analysis. Proceedings of the 25th ACM 
SIGIR Conference on Research and Development in Information 
Retrieval, Tampere, Finland, pp. 353–354, 2002. 

[Donato2007] Donato D., Laura L., Leonardi S., Millozzi S. The Web as a graph: 
How far we are. ACM Transactions on Internet Technology, vol. 7, 
no. 1, 2007. 

[Elmacioglu2005] Elmacioglu E., Lee D. On six degrees of separation in DBLP-DB and 
more. SIGMOD Record, vol. 34, no. 2, pp. 33-40, 2005. 

[Farkas2002] Farkas I., Derényi I., Jeong H., Néda Z., Oltvai Z. N., Ravasz E., 
Schubert A., Barabási A. L., Vicsek T. Networks in life: scaling 
properties and eigenvalue spectra. Physica A: Statistical Mechanics 
and its Applications, vol. 314, no. 1-4, pp. 25-34, 2002. 

[Garfield1979] Garfield E. Citation Indexing: Its Theory and Application in Science, 
Technology, and Humanities. John Wiley & Sons, New York, 1979. 

[Garfield1999] Garfield E. Journal impact factor: a brief review. Canadian Medical 
Association Journal, vol. 161, no. 8, pp. 979-980, 1999. 

[Ghemawat2003] Ghemawat S., Gobioff H., Leung S.-T. The Google file system. 



 

 103 

Proceedings of the 19th ACM symposium on Operating systems 
principles, Bolton Landing, NY, USA, pp. 29-43, 2003. 

[Gibson1998] Gibson D., Kleinberg J., Raghavan P. Inferring Web Communities from 
Link Topology. Proceedings of the 9th ACM Conference on Hypertext 
and Hypermedia, Pittsburgh, PA, pp. 225–234, 1998. 

[Gulli2005] Gulli A., Signorini A. The indexable web is more than 11.5 billion 
pages. Proceedings of the 14th international conference on World 
Wide Web (WWW 2005), Chiba, Japan, pp. 902-903, 2005. 

[Hafri2004] Hafri Y., Djeraba C. High performance crawling system. Proceedings 
of the 6th ACM SIGMM international workshop on Multimedia 
information retrieval, New York, NY, USA, pp. 299-306, 2004. 

[Han2005] Han H., Zha H., Giles C. L. Name Disambiguation in Author Citations 
Using a K-way Spectral Clustering Method. Proceedings of the 5th 
ACM/IEEE-CS International Conference on Digital Libraries, Denver, 
CO, pp.  334-343, 2005. 

[Harter1997] Harter S. P., Nisonger T. E. ISI's impact factor as misnomer: A 
proposed new measure to assess journal impact. Journal of the 
American Society for Information Science, vol. 48, no. 12,                
pp. 1146-1148., 1997. 

[Hassan2004] Hassan H. E., Holt R. C. The Small World of Software Reverse 
Engineering. Proceedings of the 11th Working Conference on Reverse 
Engineering (WCRE 2004), Delft, Netherlands, pp. 278-283, 2004. 

[He2002] He S., Spink A. A comparison of foreign authorship distribution in 
JASIST and the journal of documentation. Journal of the American 
Society for Information Science and Technology, vol. 53, no. 11,      
pp. 953-959, 2002. 

[Heydon1999] Heydon A., Najork M. Mercator: A scalable, extensible Web crawler. 
World Wide Web, vol. 2, no. 4, pp. 219-229, 1999. 

[Hirsch2005] Hirsch J. E. An index to quantify an individual's scientific research 
output. Proceedings of the National Academy of Sciences, vol. 102, 
no. 46, pp. 16569-16572, 2005. 

[Kessler1963] Kessler M. M. Bibliographic Coupling Between Scientific Papers. 
American Documentation, vol. 14, no. 1, pp. 10-25, 1963. 

[Kim2004] Kim S., Whitehead J. E. Jr. Properties of academic paper references. 
Proceedings of the 15th ACM Conference on Hypertext and 
Hypermedia (Hypertext 2004), Santa Cruz, California, USA,              
pp. 44-45, 2004. 

[Kleinberg1999a] Kleinberg J., Kumar R., Raghavan P., Rajagopalan S., Tomkins A. The 
web as a graph: Measurements, models and methods. Proceedings of 
the 5th Annual International Conference on Combinatorics and 
Computing, Tokyo, Japan, Lecture Notes in Computer Science, 
Springer, vol. 1627, pp. 1-17, 1999. 

[Kleinberg1999b] Kleinberg J. Authoritative Sources in a Hyperlinked Environment. 
Journal of the ACM, vol. 46, no. 5, pp. 604-632, 1999. 

[Kumar1999] Kumar R., Raghavan P., Rajagopalan S., Tomkins A. Trawling the 
Web for emerging cyber-communities. Computer Networks, vol. 31, 
no. 11-16, pp. 1481-1493, 1999. 

[Langville2003] Langville A. N., Meyer C. D. Deeper Inside PageRank. Internet 
Mathematics, vol. 1, no. 3, pp. 335-380, 2003. 

[Langville2005] Langville A. N., Meyer C. D. A Survey of Eigenvector Methods for 



 

 104 

Web Information Retrieval. SIAM Review, vol. 47, no. 1, pp. 135-161, 
2005. 

[Larson1996] Larson R. Bibliometrics of the World Wide Web: An exploratory 
analysis of the intellectual structure of cyberspace. Proceedings of the 
59th Annual Meeting of the American Society for Information Science 
(ASIS’96), Baltimore, Maryland, USA, pp. 71-78, 1996. 

[Lawrence1999] Lawrence S., Giles C. L., Bollacker K. Digital Libraries and 
Autonomous Citation Indexing. IEEE Computer, vol. 32, no. 6,     
pp. 67–71, 1999. 

[Lewison2002] Lewison G. Researchers’ and users’ perceptions of the relative 
standing of biomedical papers in different journals. Scientometrics, 
vol. 53, no. 2, pp. 229-240, 2002. 

[Ley2006] Ley M., Reuther P. Maintaining an Online Bibliographical Database: 
The Problem of Data Quality. Actes des sixièmes journées Extraction 
et Gestion des Connaissances (EGC’2006), Lille, France, Revue des 
Nouvelles Technologies de l'Information, vol. RNTI-E-6, pp. 5-10, 
2006. 

[Li2000] Li W.-S., Kolak O., Vu Q., Takano H. Defining logical domains in a 
web site. Proceedings of the 11th ACM Conference on Hypertext and 
Hypermedia (Hypertext 2000), San Antonio, Texas, USA, pp. 123-132, 
2000. 

[Li2003] Li X., Thelwall M., Musgrove P., Wilkinson D. The Relationship 
Between the WIFs or Inlinks of Computer Science Departments in UK 
and Their RAE Ratings or Research Productivities in 2001. 
Scientometrics, vol. 57, no. 2, pp. 239-255, 2003. 

[Liu2005] Liu X., Bollen J., Nelson M. L., Van de Sompel H. Co-authorship 
Networks in the Digital Library Research Community. Information 
Processing and Management, vol. 41, no. 6, pp. 1462-1480, 2005. 

[McCain1992] McCain K. W. Core journal networks and cocitation maps in the 
marine sciences: Tools for information management in 
interdisciplinary research. Proceedings of the 55th Annual Meeting of 
the American Society for Information Science (ASIS’92), Medford, 
New Jersey, USA, pp. 3-7, 1992. 

[McCallum1999a] McCallum A., Nigam K., Rennie J., Seymore K. Building Domain-
Specific Search Engines with Machine Learning Techniques. 
Proceedings of the AAAI Spring Symposium on Intelligent Agents in 
Cyberspace, Stanford, California, USA, pp. 28-39, 1999. 

[McCallum1999b] McCallum A., Nigam K., Rennie J., Seymore K. A Machine Learning 
Approach to Building Domain-Specific Search Engines. Proceedings of 
the 16th International Joint Conference on Artificial Intelligence 
(IJCAI99), Stockholm, Sweden, pp. 662-667, 1999. 

[McCallum2000] McCallum A. K., Nigam K., Rennie J., Seymore K. Automating the 
Construction of Internet Portals with Machine Learning. Information 
Retrieval Journal, vol. 3, no. 2, pp. 127-163, 2000. 

[Mohan2005] Mohan B. K. Searching Association Networks for Nurturers. IEEE 
Computer, vol. 38, no. 10, pp. 54-60, 2005. 

[Najork2001] Najork M., Wiener J. L. Breadth-first crawling yields high-quality 
pages. Proceedings of the 10th international conference on the World 
Wide Web (WWW10), Hong Kong, pp. 114-118, 2001. 

[Nascimento2003] Nascimento M. A., Sander J., Pound J. Analysis of SIGMOD's co-



 

 105 

authorship graph. SIGMOD Record, vol. 32, no. 3, pp. 8-10, 2003. 
[Nederhof2001] Nederhof A. J., Luwel M., Moed H. F. Assessing the quality of 

scholarly journals in Linguistics: An alternative to citation-based 
journal impact factors. Scientometrics, vol. 51, no. 1, pp. 241-265, 
2001. 

[Nevill-Manning1998] Nevill-Manning C. G., Reed T., Witten I. H. Extracting Text from 
PostScript. Software Practice and Experience, vol. 28, no. 5, pp. 481–
491, 1998. 

[Newman2003] Newman M. E. J. The Structure and Function of Complex Networks. 
SIAM Review, vol. 45, no. 2, pp. 167-256, 2003. 

[Ng2001a] Ng A. Y., Zheng A. X., Jordan. M. I. Stable algorithms for link 
analysis. Proceedings of the 24th annual international ACM SIGIR 
conference on Research and development in information retrieval 
(SIGIR 2001), New Orleans, Louisiana, USA, pp. 258-266, 2001. 

[Ng2001b] Ng A. Y., Zheng A. X., Jordan. M. I. Link Analysis, Eigenvectors and 
Stability. Proceedings of the 17th International Joint Conference on 
Artificial Intelligence (IJCAI 2001), Seattle, Washington, USA, 
pp. 903-910, 2001. 

[Ntoulas2004] Ntoulas A., Cho J., Olston C. What's new on the web?: the evolution of 
the web from a search engine perspective. Proceedings of the 13th 
international conference on the World Wide Web (WWW '04), New 
York, NY, USA, pp. 1-12, 2004. 

[Otte2002] Otte E., Rousseau R. Social network analysis: a powerful strategy, also 
for the information sciences. Journal of Information Science, vol. 28, 
no. 6, pp. 441-453, 2002. 

[Page1999] Page L., Brin S., Motwani R., Winograd T. The PageRank Citation 
Ranking: Bringing Order to the Web. Computer Science Department, 
Stanford University, California, USA, Technical Report 1999-66, Nov. 
1999. 

[Pandurangan2002] Pandurangan G.,  Raghavan P., Upfal E. Using PageRank to 
Characterize Web Structure. Proceedings of the 8th Annual 
International Conference on Computing and Combinatorics (COCOON 
2002), Singapore, Lecture Notes in Computer Science, vol. 2387, 
pp. 330-339, 2002. 

[Pennock2002] Pennock D. M., Flake G. W., Lawrence S., Glover E. J., Giles C. L. 
Winners don't take all: Characterizing the competition for links on the 
web. Proceedings of the National Academy of Sciences, vol. 99, no. 8, 
pp. 5207-5211, 2002. 

[Petříček2005] Petříček V., Cox I. J., Han H., Councill I. G., Giles C. L.                     A 
Comparison of On-Line Computer Science Citation Databases. 
Research and Advanced Technology for Digital Libraries, Proceedings 
of the 9th European Conference, ECDL 2005, Vienna, Austria, Lecture 
Notes in Computer Science, Springer, vol. 3652, pp. 438-449, 2005. 

[Raan2006] van Raan A. F. J. Comparison of the Hirsch-index with standard 
bibliometric indicators and with peer judgment for 147 chemistry 
research groups. Scientometrics, vol. 67, no. 3, pp. 491-502, 2006. 

[Raghavan2001] Raghavan S., Garcia-Molina H. Crawling the Hidden Web. 
Proceedings of the 27th International Conference on Very Large Data 
Bases (VLDB), Rome. Italy, pp.129-138, 2001 

[Rahm2005] Rahm E., Thor A. Citation analysis of database publications. 



 

 106 

SIGMOD Record, vol. 34, no. 4, pp. 48-53, 2005. 
[Rennie1999] Rennie J., McCallum A. Using reinforcement learning to spider the 

web efficiently. Proceedings of the 16th International Conference on 
Machine Learning, Bled, Slovenia, pp. 335-343, 1999. 

[Saha2003] Saha S., Saint S., Christakis D. A. Impact factor: a valid measure of 
journal quality? Journal of the Medical Library Association, vol. 91, 
no. 1, pp. 42-46, 2003. 

[Seglen1997] Seglen P. O. Why the impact factor of journals should not be used for 
evaluating research. British Medical Journal, vol. 314, no. 7079,      
pp. 498-502, 1997. 

[Seymore1999] Seymore K., McCallum A., Rosenfeld R. Learning Hidden Markov 
Model Structure for Information Extraction. Proceedings of the 
AAAI’99 Workshop on Machine Learning for Information Extraction, 
Orlando, FL, pp. 37–42, 1999. 

[Sidiropoulos2005] Sidiropoulos A., Manolopoulos Y. A Citation-Based System to Assist 
Prize Awarding. SIGMOD Record, vol. 34, no. 4, pp. 54-60, 2005. 

[Sidiropoulos2005b] Sidiropoulos A., Manolopoulos Y. A new perspective to automatically 
rank scientific conferences using digital libraries. Information 
Processing and Management, vol. 41, no. 2, pp. 289-312, 2005. 

[Sidiropoulos2006] Sidiropoulos A., Manolopoulos Y. Generalized comparison of graph-
based ranking algorithms for publications and authors. Journal of 
Systems and Software, vol. 79, no. 12, pp. 1679-1700, 2006. 

[Small1973] Small H. Co-citation in the scientific literature:  A new measure of the 
relationship between two documents. Journal of the American Society 
for Information Science, vol. 24, no. 4, pp. 265-269, 1973. 

[Smeaton2003] Smeaton A. F., Keogh G., Gurrin C., McDonald K., Sødring T. 
Analysis of papers from twenty-five years of SIGIR conferences: what 
have we been doing for the last quarter of a century? SIGIR Forum, 
vol. 37, no. 1, pp. 49-53, 2003. 

[Testa1998] Testa J. The ISI Database: the journal selection process. Ciência da 
Informação, vol. 27, no. 2, pp. 233-235, 1998. 

[Thelwall2001] Thelwall M. Extracting Macroscopic Information from Web Links. 
Journal of the American Society for Information Science and 
Technology, vol. 52, no. 13, pp.1157-1168, 2001. 

[Thelwall2002] Thelwall M. Conceptualizing documentation on the Web: an 
evaluation of different heuristic-based models for counting links 
between university Web sites. Journal of the American Society for 
Information Science and Technology, vol. 53, no. 12, pp. 995-1005, 
2002. 

[Vigna2005] Vigna S. TruRank: taking PageRank to the limit. Proceedings of the 
14th international conference on World Wide Web (WWW 2005), 
Chiba, Japan, pp. 976-977, 2005. 

[Wagner2003] Wagner C., Leydesdorff L. Mapping global science using international 
co-authorships: A comparison of 1990 and 2000. Proceedings of the 
9th International Conference on Scientometrics and Informetrics, 
Dalian, China, pp. 330-340, 2003. 

[Wasserman1994] Wasserman S., Faust K. Social Network Analysis: Methods and 
Applications. Cambridge University Press, 1994. 

[White1989] White H. D., McCain K. W. Bibliometrics. Annual review of 
information science and technology, vol. 24, pp. 119-186, 1989. 



 

 107 

[Wu2005] Wu B., Davison B. D. Identifying link farm spam pages. Proceedings 
of the 14th international conference on World Wide Web (WWW 
2005), Chiba, Japan, pp. 820-829, 2005. 

[Xing2004] Xing W., Ghorbani A. Weighted PageRank algorithm. Proceedings. of 
the 2nd Annual Conference on Communication Networks and Services 
Research, Fredericton, Canada, pp. 305-314, 2004.  

[Yang2005] Yang H., King I., Lyu M. R. Predictive ranking: a novel page ranking 
approach by estimating the web structure. Proceedings of the 14th 
international conference on World Wide Web (WWW 2005), Chiba, 
Japan, pp. 944-945, 2005. 

 
 



 

 108 

Web 
 
[1] ACM SIGMOD Online | SIGMOD Awards: 

http://www.sigmod.org/sigmodinfo/awards/#innovations 
[2] http://dblp.uni-trier.de/xml/dblp20040213.xml.gz 
[3] World Universities' ranking on the Web: Home: http://www.webometrics.info/ 
[4] http://home.zcu.cz/~dalfia/papers/France.svg 
[5] DBLP Computer Science Bibliography: http://dblp.uni-trier.de/ 
[6] http://dblp.uni-trier.de/xml/egc2006.ppt 
[7] DBIS-Homepage - DBL-Browser: http://dbis.uni-trier.de/DBL-Browser/ 
[8] http://dblp.uni-trier.de/xml/ 
[9] ACM SIGMOD Anthology: http://dblp.uni-trier.de/db/anthology.html 
[10] http://www.informatik.uni-trier.de/~ley/db/about/top.html 
[11] http://www.informatik.uni-trier.de/~ley/db/journals/tods/Chen76.html 
[12] http://dblp.uni-trier.de/rec/bibtex/journals/tods/Chen76 
[13] http://dblp.uni-trier.de/db/journals/tods/Chen76.html 
[14] DBLP FAQ: Software: http://www.informatik.uni-trier.de/~ley/db/about/faqsoft.html 
[15] CiteSeer Publications ResearchIndex:: http://citeseer.ist.psu.edu/ 
[16] NZDL: PreScript: http://www.nzdl.org/html/prescript.html 
[17] Most cited authors in Computer Science [CiteSeer.Continuity; Steve Lawrence, Kurt 

Bollacker, Lee Giles]: http://citeseer.ist.psu.edu/mostcited.html 
[18] CiteSeer.PSU OAI: http://citeseer.ist.psu.edu/oai.html 
[19] Rexa Search Engine: http://rexa.info/ 
[20] Google Scholar: http://scholar.google.com/ 
[21] Live Search Academic: http://academic.live.com/ 
[22] Scirus – for scientific information: http://www.scirus.com/ 
[23] Inspec: http://www.iee.org/publish/inspec/ 
[24] The h Index for Computer Science: http://www.cs.ucla.edu/~palsberg/h-number.html 
[25] H-number (or H-index): http://www.brics.dk/~mis/hnumber.html 
[26] http://www.cs.ucla.edu/~palsberg/hnum 
[27] Web of Science - Thomson Scientific: http://scientific.thomson.com/products/wos/ 
[28] The Thomson Scientific Journal Selection Process - Thomson Scientific: 

http://scientific.thomson.com/free/essays/selectionofmaterial/journalselection/ 
[29] Current Web Contents Web Site Selection Criteria - Thomson Scientific: 

http://www.scientific.thomson.com/free/essays/selectionofmaterial/cwc-criteria/ 
[30] Science Citation Index help, Web version: Princeton Unviersity: 

http://biolib.princeton.edu/instruct/OLDSCI.html 
[31] Journal Citation Reports - Thomson Scientific: 

http://scientific.thomson.com/products/jcr/ 
[32] [ISI Highly Cited Researchers Version 1.1]: http://www.isihighlycited.com/ 
[33] The ACM Portal: http://portal.acm.org/portal.cfm 
[34] Harzing.com - Research in International and Cross-cultural Management: 

http://www.harzing.com/resources.htm#/pop.htm 
[35] Larbin: http://larbin.sourceforge.net/index.html 
[36] ht://Dig: http://www.htdig.org/ 
[37] webbase: http://www.nongnu.org/webbase/ 
[38] Internet Archive: http://www.archive.org/index.php 
[39] Google: http://www.google.com/ 
[40] AltaVista: http://www.altavista.com/ 



 

 109 

Author’s Publications 
 
Journals (reviewed) 

Fiala D., Rousselot F., Ježek K. PageRank for Bibliographic Networks, 
Scientometrics, vol. 76, no. 1, 2008. (to appear)  
 
International conferences (reviewed) 
 Fiala D., Rousselot F., Ježek K. Ranking Algorithms For Web Sites: Finding 
Authoritative Academic Web Sites and Researchers. Proceedings of the 3rd International 
Conference on Web Information Systems and Technologies WEBIST'07, Barcelona, Spain, 
pp. 372-375, 2007. 
 Fiala D., Ježek K., Rousselot F. Finding Authoritative Researchers on Academic Web 
Sites. Proceedings of the 17th International Conference on Computer, Information, and 
Systems Science, and Engineering CISE'06, Cairo, Egypt, Enformatika Transactions on 
Engineering, Computing and Technology, vol. 17, pp. 74-79, 2006. 
 Fiala D., Tesař R., Ježek K., Rousselot F. Extracting Information from Web Content 
and Structure. Proceedings of the 9th International Conference on Information Systems 
Implementation and Modelling ISIM’06, Přerov, Czech Republic, pp. 133-140, 2006. 
 Tesař R., Fiala D., Rousselot F., Ježek K. A comparison of two algorithms for 
discovering repeated word sequences. Proceedings of  the 6th International Conference on 
Data Mining, Text Mining and their Business Applications DATA MINING 2005, Skiathos, 
Greece, WIT Transactions on Information and Communication Technologies, vol. 35, pp. 
121-131, 2005. 
 Fiala D., Ježek K. Retrieving citations on the Web. Proceedings of International 
Conference on Knowledge Engineering and Decision Support ICKEDS’04, Porto, Portugal, 
pp. 481 – 488, 2004. 
 
National conferences (reviewed) 
 Fiala D., Ježek K., Rousselot F. Využití struktury webu pro vyhledávání autoritativních 
institucí a osob (Using the Web structure for the Search for Authoritative Institutions and 
Individuals). Proceedings of the 6th Annual Conference ZNALOSTI 2007, Ostrava, Czech 
Republic, pp. 300-303, 2007. 
 
International workshops (unreviewed) 
 Belaïd A., Alusse A., Rangoni Y., Cecotti H., Farah F., Gagean N., Fiala D.,                     
Rousselot F., Vigne H. Document retro-conversion for personalized electronic re-edition. 
Proceedings of  the International Workshop on Document Analysis IWDA’05, Calcutta, 
India, 2005. 
 
Other publications 
 Fiala D., Tesař R., Ježek K. Získávání informací z obsahu a topologie webu 
(Extracting Information from Web Content and Topology). Final report on the project FRVŠ 
1347/2005/G1, Dec. 2005. 
 Fiala D. Web Mining and Its Applications to Researchers Support. Department of 
Computer Science and Engineering, University of West Bohemia in Pilsen, Czech Republic, 
Technical Report DCSE/TR-2005-06, April 2005. 
 Fiala D. A System for Citations Retrieval on the Web. MSc. thesis, University of West 
Bohemia in Pilsen, 2003. 



 

 110 

List of Abbreviations 
 
ACM  Association for Computing Machinery 
BP Balanced Popularity 
CCIDF Common Citation vs. Inverse Document Frequency 
CD  Compact Disk 
CGI Common Gateway Interface 
CRC Cyclic Redundancy Check 
CS Computer Science 
DBLP Digital Bibliography & Library Project 
DL Digital Library 
DNS  Domain Name System 
DVD Digital Versatile (Video) Disk 
GB Gigabyte 
HITS  Hyperlink-Induced Topic Search 
HMM Hidden Markov Model 
HTML  Hypertext Markup Language 
HTTP Hypertext Transfer Protocol 
ID Identification 
IF Impact Factor 
IP  Internet Protocol 
IR Information Retrieval 
ISI  Institute for Scientific Information 
MD5 Message Digest 5 
OCR  Optical Character Recognition 
OPIC  On-line Page Importance Computation 
PDF Portable Document Format 
PHP Hypertext PreProcessor 
PR PageRank 
SALSA Stochastic Approach for Link-Structure Analysis 
SCC Strongly Connected Core (Component) 
SCEAS Scientific Collection Evaluator with Advanced Scoring 
SIGMOD Special Interest Group Management of Data 
TFIDF Term Frequency vs. Inverse Document Frequency 
UDP User Datagram Protocol 
URL Uniform Resource Locator 
VLDB Very Large Databases 
WWW World Wide Web 
XML  Extended Markup Language 
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Appendix 
 
 Citations In-degree HITS 

1 Michael Stonebraker 5 346 Michael Stonebraker 1 857 Michael Stonebraker 
2 David J. Dewitt 4 865 David J. Dewitt 1 432 David J. Dewitt 
3 Jeffrey D. Ullman 3 926 Jim Gray 1 347 Raymond A. Lorie 
4 Jim Gray 3 702 Raymond A. Lorie 1 250 Jim Gray 
5 Raymond A. Lorie 3 317 Jeffrey D. Ullman 1 156 Michael J. Carey 
6 Philip A. Bernstein 2 893 Won Kim 1 113 Won Kim 
7 Michael J. Carey 2 773 E. F. Codd 1 110 Philip A. Bernstein 
8 E. F. Codd 2 732 Philip A. Bernstein 1 109 Umeshwar Dayal 
9 Hector Garcia-Molina 2 696 Michael J. Carey 1 042 Jeffrey D. Ullman 

10 Won Kim 2 670 Umeshwar Dayal 1 035 Donald D. Chamberlin 
11 Rakesh Agrawal 2 640 David Maier 983 David Maier 
12 Serge Abiteboul 2 601 Hector Garcia-Molina 974 Morton M. Astrahan 
13 David Maier 2 448 Donald D. Chamberlin 940 François Bancilhon 
14 Umeshwar Dayal 2 301 Peter P. Chen 896 Bruce G. Lindsay 
15 Yehoshua Sagiv 2 160 Rakesh Agrawal 855 Kapali P. Eswaran 
16 Donald D. Chamberlin 2 099 Morton M. Astrahan 829 Hamid Pirahesh 
17 Catriel Beeri 2 089 Kapali P. Eswaran 820 E. F. Codd 
18 François Bancilhon 2 059 Serge Abiteboul 809 Hector Garcia-Molina 
19 Christos Faloutsos 1 970 Nathan Goodman 804 Eugene Wong 
20 Jennifer Widom 1 937 François Bancilhon 802 Irving L. Traiger 
21 Nathan Goodman 1 928 Hamid Pirahesh 765 Serge Abiteboul 
22 Morton M. Astrahan 1 847 Bruce G. Lindsay 761 Nathan Goodman 
23 Raghu Ramakrishnan 1 825 Irving L. Traiger 760 Patricia G. Selinger 
24 Irving L. Traiger 1 708 Eugene Wong 742 Thomas G. Price 
25 Jeffrey F. Naughton 1 704 Catriel Beeri 709 Rakesh Agrawal 
26 Eugene Wong 1 600 Jennifer Widom 696 Catriel Beeri 
27 Hamid Pirahesh 1 600 Randy H. Katz 676 Patrick Valduriez 
28 Ronald Fagin 1 599 Jeffrey F. Naughton 675 Stanley B. Zdonik 
29 Kapali P. Eswaran 1 595 Nick Roussopoulos 674 Yehoshua Sagiv 
30 Bruce G. Lindsay 1 548 Stanley B. Zdonik 670 Lawrence A. Rowe 
31 Peter P. Chen 1 511 Raghu Ramakrishnan 667 Jeffrey F. Naughton 
32 Richard Hull 1 488 Yehoshua Sagiv 661 Randy H. Katz 
33 Nick Roussopoulos 1 383 Shamkant B. Navathe 650 Jennifer Widom 
34 Randy H. Katz 1 381 John Miles Smith 645 Raghu Ramakrishnan 
35 Patrick Valduriez 1 373 H. V. Jagadish 640 Nick Roussopoulos 
36 C. Mohan 1 350 Patrick Valduriez 621 Carlo Zaniolo 
37 H. V. Jagadish 1 343 Henry F. Korth 619 Henry F. Korth 
38 Patricia G. Selinger 1 341 Patricia G. Selinger 619 Mike W. Blasgen 
39 Stanley B. Zdonik 1 336 Thomas G. Price 616 Goetz Graefe 
40 Goetz Graefe 1 327 Ronald Fagin 613 Gianfranco R. Putzolu 

 

Missed: 84. Rudolf Bayer (845) Missed: 47. C. Mohan (578), 75. 
Rudolf Bayer (466) 

Missed: 45. C. Mohan, 46. 
Ronald Fagin, 94. Rudolf 
Bayer 

 

Table 1: Top 40 DBLP authors for each ranking (part 1). 
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 PR w a b 
1 E. F. Codd E. F. Codd E. F. Codd Michael Stonebraker 
2 Donald D. Chamberlin  Michael Stonebraker Michael Stonebraker Jim Gray 
3 Michael Stonebraker Jim Gray Donald D. Chamberlin  David J. Dewitt 
4 Philip A. Bernstein Donald D. Chamberlin  Raymond A. Lorie Hector Garcia-Molina 
5 John Miles Smith Raymond A. Lorie Philip A. Bernstein Jeffrey D. Ullman 
6 Jim Gray Philip A. Bernstein Jim Gray Philip A. Ber nstein 
7 Rudolf Bayer John Miles Smith John Miles Smith David Maier 
8 Raymond A. Lorie Jeffrey D. Ullman Morton M. Astrahan Moshe Y. Vardi 
9 Morton M. Astrahan Morton M. Astrahan Irving L. Traiger E. F. Codd 

10 Kapali P. Eswaran Irving L. Traiger Eugene Wong Catriel Beeri 
11 Eugene Wong Eugene Wong Kapali P. Eswaran Umeshwar Dayal 
12 Irving L. Traiger Kapali P. Eswaran Jeffrey D. Ullman Serge Abiteboul 
13 Gerald Held Ronald Fagin Ronald Fagin Michael J. Carey 
14 Hans Albrecht Schmid David J. Dewitt Rudolf Bayer Yehoshua Sagiv 
15 Jeffrey D. Ullman Catriel Beeri Catriel Beeri Christos H. Papadimitriou 
16 Michael Hammer Rudolf Bayer William C. McGee Rakesh Agrawal 
17 Mike W. Blasgen William C. McGee Gerald Held Bruce G. Lindsay 
18 Raymond F. Boyce Gerald Held Diane C. P. Smith Jeffrey F. Naughton 
19 Ronald Fagin Gianfranco R. Putzolu Gianfranco R. Putzolu Nick Roussopoulos 
20 Gianfranco R. Putzolu Diane C. P. Smith David J. Dewitt Hans-Jörg Schek 
21 Edward M. McCreight Nathan Goodman Nathan Goodman Raghu Ramakrishnan 
22 Nathan Goodman Michael Hammer Michael Hammer Hamid Pirahesh 
23 James W. Mehl Mike W. Blasgen Mike W. Blasgen Goetz Graefe 
24 W. Frank King III Stephen Todd Hans Albrecht Schmid Raymond A. Lorie 
25 Bradford W. Wade Hans Albrecht Schmid Stephen Todd Alberto O. Mendelzon 
26 Paul R. McJones Bradford W. Wade Paul R. McJones Gio Wiederhold 
27 Robert C. Goldstein James W. Mehl Bradford W. Wade Ronald Fagin 
28 Stephen Todd Paul R. McJones James W. Mehl Richard T. Snodgrass 
29 Patricia P. Griffiths W. Frank King III Patricia P. Griffiths Donald D. Chamberlin 
30 Diane C. P. Smith Patricia P. Griffiths W. Frank King III François Bancilhon 
31 Philip Yen-tang Chang Alfred V. Aho Alfred V. Aho Mihalis Yannakakis 
32 Peter Kreps Peter Kreps Peter Kreps Jennifer Widom 
33 Vera Watson Yehoshua Sagiv Edward M. McCreight Nathan Goodman 
34 Peter P. Chen Edward M. McCreight Robert C. Goldstein Randy H. Katz 
35 Catriel Beeri David Maier Moshé M. Zloof H. V. Jagadish 
36 David J. Dewitt Robert C. Goldstein Philip Yen-tang Chang Won Kim 
37 Alfred V. Aho Raymond F. Boyce Raymond F. Boyce Irving L. Traiger 
38 John J. Donovan Moshé M. Zloof Vera Watson Abraham Silberschatz 
39 Stuart G. Greenberg Vera Watson C. J. Date Eugene Wong 
40 Loius M. Gutentag Umeshwar Dayal Peter P. Chen Guy M. Lohman 

 

Missed: 51. David 
Maier, 59. Patricia 
Selinger, 60. Hector 
Garcia-Molina, 63. 
Michael Carey, 65. 
Rakesh Agrawal, 104. 
Serge Abiteboul, 113. 
C. Mohan 

Missed: 46. Michael 
Carey, 49. Hector 
Garcia-Molina, 55. 
Patricia Selinger, 58. 
Rakesh Agrawal, 61. 
Serge Abiteboul, 110. 
C. Mohan 

Missed: 47. David 
Maier, 53. Patricia 
Selinger, 55. Michael 
Carey, 62. Hector 
Garcia-Molina, 64. 
Rakesh Agrawal, 69. 
Serge Abiteboul, 116. 
C. Mohan 

Missed: 61. Patricia 
Selinger, 62. C. Mohan, 
97. Rudolf Bayer 

 

Table 2: Top 40 DBLP authors for each ranking (part 2). 
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 c d e 
1 Michael Stonebraker Michael Stonebraker Michael Sto nebraker 
2 Jim Gray Jim Gray David J. Dewitt 
3 David J. Dewitt David J. Dewitt Hector Garcia-Molin a 
4 Hector Garcia-Molina Philip A. Bernstein Jim Gray 
5 Jeffrey D. Ullman Hector Garcia-Molina Jeffrey D. U llman 
6 Philip A. Bernstein David Maier Philip A. Bernstein  
7 David Maier Jeffrey D. Ullman David Maier 
8 Umeshwar Dayal Umeshwar Dayal Moshe Y. Vardi 
9 Bruce G. Lindsay Michael J. Carey Umeshwar Dayal 

10 Michael J. Carey E. F. Codd Catriel Beeri 
11 Serge Abiteboul Bruce G. Lindsay E. F. Codd 
12 Jeffrey F. Naughton Catriel Beeri Serge Abiteboul 
13 Catriel Beeri Jeffrey F. Naughton Yehoshua Sagiv 
14 Hamid Pirahesh Serge Abiteboul Michael J. Carey 
15 Moshe Y. Vardi Hamid Pirahesh Rakesh Agrawal 
16 Hans-Jörg Schek Goetz Graefe Christos H. Papadimitriou 
17 E. F. Codd Hans-Jörg Schek Bruce G. Lindsay 
18 Yehoshua Sagiv Rakesh Agrawal Jeffrey F. Naughton 
19 Rakesh Agrawal Raymond A. Lorie Nick Roussopoulos 
20 Raghu Ramakrishnan Yehoshua Sagiv Hans-Jörg Schek 
21 Goetz Graefe Nick Roussopoulos Raghu Ramakrishnan 
22 Nick Roussopoulos Gio Wiederhold Hamid Pirahesh 
23 Raymond A. Lorie Donald D. Chamberlin Raymond A. Lorie 
24 Christos H. Papadimitriou Moshe Y. Vardi Alberto O. Mendelzon 
25 Gio Wiederhold Dina Bitton Ronald Fagin 
26 Donald D. Chamberlin Richard T. Snodgrass Donald D. Chamberlin 
27 Richard T. Snodgrass Christos H. Papadimitriou Gio Wiederhold 
28 Ronald Fagin Raghu Ramakrishnan Goetz Graefe 
29 Dina Bitton Guy M. Lohman Nathan Goodman 
30 Jennifer Widom Ronald Fagin Mihalis Yannakakis 
31 Randy H. Katz Randy H. Katz François Bancilhon 
32 Alberto O. Mendelzon François Bancilhon Jennifer Widom 
33 Guy M. Lohman Alberto O. Mendelzon Randy H. Katz 
34 François Bancilhon Jennifer Widom Richard T. Snodgrass 
35 H. V. Jagadish Michael J. Franklin Abraham Silberschatz 
36 Abraham Silberschatz Irving L. Traiger H. V. Jagadish 
37 Irving L. Traiger H. V. Jagadish Guy M. Lohman 
38 Michael J. Franklin Won Kim Eugene Wong 
39 Mihalis Yannakakis Eugene Wong Peter Buneman 
40 Nathan Goodman Nathan Goodman Christos Faloutsos 

 

Missed: 55. Patricia 
Selinger, 59. C. Mohan, 
132. Rudolf Bayer 

Missed: 54. Patricia 
Selinger, 65. C. Mohan, 
94. Rudolf Bayer 

Missed: 63. Patricia 
Selinger, 65. C. Mohan, 
93. Rudolf Bayer 

 

Table 3: Top 40 DBLP authors for each ranking (part 3). 
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 f g 
1 Jim Gray E. F. Codd 
2 E. F. Codd Jim Gray 
3 Michael Stonebraker Michael Stonebraker 
4 David J. Dewitt Philip A. Bernstein 
5 Philip A. Bernstein David J. Dewitt 
6 Raymond A. Lorie Donald D. Chamberlin  
7 Donald D. Chamberlin  Raymond A. Lorie 
8 Jeffrey D. Ullman Jeffrey D. Ullman 
9 Irving L. Traiger Irving L. Traiger 

10 Morton M. Astrahan Morton M. Astrahan 
11 David Maier John Miles Smith 
12 Eugene Wong Eugene Wong 
13 Catriel Beeri David Maier 
14 John Miles Smith Hector Garcia-Molina 
15 Bruce G. Lindsay Catriel Beeri 
16 Hector Garcia-Molina Kapali P. Eswaran 
17 Ronald Fagin Ronald Fagin 
18 Kapali P. Eswaran Gerald Held 
19 Gerald Held Umeshwar Dayal 
20 Umeshwar Dayal Rudolf Bayer 
21 Michael J. Carey Michael Hammer 
22 Yehoshua Sagiv Bruce G. Lindsay 
23 Gianfranco R. Putzolu Nathan Goodman 
24 Nathan Goodman Gianfranco R. Putzolu 
25 Rudolf Bayer Stephen Todd 
26 Mike W. Blasgen Diane C. P. Smith 
27 Michael Hammer William C. McGee 
28 William C. McGee Mike W. Blasgen 
29 Stephen Todd Michael J. Carey 
30 Diane C. P. Smith Phyllis Reisner 
31 Jeffrey F. Naughton Paul R. McJones 
32 Thomas G. Price Jeffrey F. Naughton 
33 Bradford W. Wade Hamid Pirahesh 
34 Hamid Pirahesh Yehoshua Sagiv 
35 Phyllis Reisner Bradford W. Wade 
36 Patricia G. Selinger Hans Albrecht Schmid 
37 Serge Abiteboul Nick Roussopoulos 
38 W. Frank King III Won Kim 
39 François Bancilhon James W. Mehl 
40 James W. Mehl W. Frank King III 

 

Missed: 49. Rakesh 
Agrawal, 105. C. Mohan 

Missed: 43. Serge 
Abiteboul, 48. Patricia 
Selinger, 49. Rakesh 
Agrawal, 101. C. 
Mohan 

 

Table 4: Top 40 DBLP authors for each ranking (part 4). 
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 Site In-Links In-Degree Out-Links  Out-Degree 

1 cedric.cnam.fr  32 6 0 0 
2 citi.insa-lyon.fr  13 3 47 1 
3 dep-info.u-psud.fr  59 1 0 0 
4 dept-info.labri.fr  22 6 3 1 
5 deptinfo.unice.fr  11 4 2 1 
6 dept-info.univ-brest.fr  0 0 1 1 
7 dpt-info.u-strasbg.fr  127 4 0 0 
8 eric.univ-lyon2.fr  27 10 5 1 
9 eurise.univ-st-etienne.fr  41 6 0 0 

10 lifc.univ-fcomte.fr  28 7 9 2 
11 lihs.univ-tlse1.fr  5 2 0 0 
12 lil.univ-littoral.fr  10 2 2 1 
13 lina.atlanstic.net  0 0 20 8 
14 liris.cnrs.fr  80 8 17 2 
15 lis.snv.jussieu.fr  0 0 13 7 
16 lisi.insa-lyon.fr  7 3 36 2 
17 liuppa.univ-pau.fr  2 2 0 0 
18 llaic3.u-clermont1.fr  3 2 0 0 
19 lrlweb.univ-bpclermont.fr  1 1 1 1 
20 lsiit.u-strasbg.fr  2 2 371 18 
21 msi.unilim.fr  11 2 0 0 
22 phalanstere.univ-mlv.fr  5 3 0 0 
23 psiserver.insa-rouen.fr  0 0 10 4 
24 sirac.inrialpes.fr  6 1 7 1 
25 sis.univ-tln.fr  21 7 1 1 
26 www.ai.univ-paris8.fr  1 1 0 0 
27 www.cril.univ-artois.fr  16 4 120 18 
28 www.depinfo.uhp-nancy.fr  1 1 0 0 
29 www.di.ens.fr  72 5 18 1 
30 www.dil.univ-mrs.fr  32 4 0 0 
31 www.dptinfo.ens-cachan.fr  1 1 13 2 
32 www.epita.fr  4 2 0 0 
33 www.i3s.unice.fr  44 6 82 4 
34 www.icp.inpg.fr  5 2 6 2 
35 www.if.insa-lyon.fr  6 1 0 0 
36 www.info.iut.u-bordeaux1.fr 0 0 0 0 
37 www.info.iut-tlse3.fr 0 0 0 0 
38 www.info.unicaen.fr  40 8 5 3 
39 www.info.univ-angers.fr  29 5 3 1 
40 www.inrialpes.fr  125 12 5 2 

 

Table 5: French sites and their graph properties (alphabetical order, 1 - 40). 



 

 116 

 
 Site In-Links In-Degree Out-Links  Out-Degree 
41 www.irisa.fr  213 14 115 4 
42 www.irit.fr  123 11 42 4 
43 www.isc.cnrs.fr  6 3 0 0 
44 www.isima.fr  22 4 4 2 
45 www.iut-info.univ-lille1.fr  11 1 0 0 
46 www.laas.fr  62 12 22 3 
47 www.labri.fr  95 8 4 2 
48 www.lalic.paris4.sorbonne.fr  5 3 0 0 
49 www.li.univ-tours.fr  13 5 1 1 
50 www.lia.univ-avignon.fr  10 7 35 19 
51 www.liafa.jussieu.fr  122 8 2 1 
52 www.lif.univ-mrs.fr  17 5 79 13 
53 www.lifl.fr  209 13 1476 49 
54 www.lip6.fr  64 7 6 4 
55 www.lirmm.fr  117 15 480 40 
56 www.lisi.ensma.fr  20 4 2 1 
57 www.listic.univ-savoie.fr  0 0 1 1 
58 www.lita.univ-metz.fr  1 1 0 0 
59 www.lix.polytechnique.fr  177 7 3 2 
60 www.loria.fr  460 15 501 37 
61 www.lri.fr  225 12 992 54 
62 www.prism.uvsq.fr  79 8 13 2 
63 www-clips.imag.fr  20 6 10 3 
64 www-futurs.inria.fr  917 3 4 1 
65 wwwhds.utc.fr  2 1 23 12 
66 www-id.imag.fr  24 6 38 1 
67 www-info.enst-bretagne.fr  0 0 8 1 
68 www-info.iutv.univ-paris13.fr  18 1 0 0 
69 www-leibniz.imag.fr  93 10 0 0 
70 www-lil.univ-littoral.fr  55 6 0 0 
71 www-lipn.univ-paris13.fr  22 8 217 36 
72 www-lium.univ-lemans.fr  1 1 6 4 
73 www-lmc.imag.fr  31 6 9 2 
74 www-lsr.imag.fr  41 5 10 1 
75 www-rocq.inria.fr  223 8 1 1 
76 www-sic.univ-poitiers.fr  33 3 0 0 
77 www-sop.inria.fr  648 15 243 3 
78 www-timc.imag.fr  37 9 2 2 
79 www-valoria.univ-ubs.fr  5 2 14 2 
80 www-verimag.imag.fr  50 6 0 0 

 

Table 6: French sites and their graph properties (alphabetical order, 41 - 80). 
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 CZ In-Degree  CZ HITS CZ PageRank  FR In-Degree  FR HITS FR PageRank 
1 Alon N Jancar P Moller F Alur R Halbwachs N Cahon S 
2 Nesetril J Alon N Nesetril J Halbwachs N Alur R Berry G 
3 Jancar P Nesetril J Jancar P Zhang L Abadi M Milner R 
4 Hell P Christensen S Kucera A Abadi M Zhang L Shamir A 
5 Milner R Milner R Hoppe H Foster I Caspi P Filiol E 
6 Caucal D Hell P Curless B Caspi P Sifakis J Dubois M 
7 Christensen S Bouajjani A Pultr A Sifakis J Berry G Ullman J 
8 Hajic J Vardi M Y Pala K Berry G Zhang H Alur R 
9 Burkart O Caucal D Lorensen W E Pnueli A Courcoubetis C Halbwachs N 

10 Bouajjani A Thomas R Alon N Zhang H Pnueli A Karp R 
11 Moller F Moller F Smrz P Courcoubetis C Ullman J D Bellare M 
12 Kucera A Burkart O Banaschewski B Ullman J D Benveniste A Zhang Z 
13 Hirshfeld Y Kucera A Hajic J Benveniste A Manna Z Benveniste A 
14 Matousek J Vardi M Caucal D Abiteboul S Nicollin X Reps T 
15 Panevova J Ullman J D Hirshfeld Y Ullman J Cousot R Lavalle S 
16 Robertson N Rivest R L Herrlich G Gupta A Raymond P Dombre E 
17 Golub G H Hopcroft J E Panevova J Agrawal R Cousot P Boudet S 
18 Esparza J Pala K Jerrum M Manna Z Foster I Dgoulange E 
19 Pala K Robertson N Sanguineti M Maler O Abiteboul S Gourdon A 
20 Ullman J D Hajic J Savick P Nicollin X Maler O Abiteboul S 
21 Johnson D S Esparza J Christensen S Cousot P Ullman J Charpin P 
22 Sgall P Donald E Esparza J Thomas W Asarin E Carlet C 
23 Graham R L Oliva K Jacobson N Cousot R Harel D Abadi M 
24 Rivest R L Hirshfeld Y Galluccio A Raymond P Olivero A Gupta A 
25 Oracles S Panevova J Winkler F Vardi M David A Cohen G 
26 Greenbaum A Matousek J Mcaloon K Kesselman C Henzinger T Courcoubetis C 
27 Agrawal R Thomas W Labahn G Johnson D Vardi M Zhu X 
28 Kratochvil J Kratochvil J Matousek J Milner R Comon H Coppersmith D 
29 Ganter B Johnson D S Johnson D S Srikant R Clarke E Maier D 
30 Thomas R Richard J Benzi M Bouajjani A Johnson D Troccaz J 
31 Clarke E M Clarke E M Welzl E Dongarra J Henzinger T A Goldwasser S 
32 Grumberg O Sgall P Sedlcek R Olivero A Bouajjani A Williams M 
33 Vardi M Leiserson C E Praehofer H Asarin E Johnson R Taylor R 
34 Sterling L Grumberg O Zeigler B Johnson R Gupta A Zheng Y 
35 Garey M R Raspaud A Kelton D Harel D Baader F Dongarra J 
36 Oliva K Matthew L Kim T David A Zwaenepoel W Buhrman H 
37 Imielinski T Zhu X Psutka J Rivest R Wolper P Papadimitriou C H 
38 Cormen T H Seymour P Sharma S Helm R Li K Erdos P 
39 Jerrum M Graham R L Jain P Shenker S Agrawal R Abdalla M 
40 Pach J Hendler J Pach J Wolper P Coupaye T Payan Y 

 

Table 7: Top 40 international authors in Czech and French corpora. 

 


