
applied
sciences

Article

Unsupervised Feature Selection for Outlier Detection on
Streaming Data to Enhance Network Security

Michael Heigl 1,2,* , Enrico Weigelt 2 , Dalibor Fiala 1 and Martin Schramm 2

����������
�������

Citation: Heigl, M.; Weigelt, E.; Fiala,

D.; Schramm, M. Unsupervised

Feature Selection for Outlier

Detection on Streaming Data to

Enhance Network Security. Appl. Sci.

2021, 11, 12073. https://doi.org/

10.3390/app112412073

Academic Editor: Arcangelo

Castiglione

Received: 28 November 2021

Accepted: 15 December 2021

Published: 18 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia,
Technická 8, 301 00 Plzeň, Czech Republic; dalfia@kiv.zcu.cz

2 Institute ProtectIT, Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1,
94469 Deggendorf, Germany; enrico.weigelt@th-deg.de (E.W.); martin.schramm@th-deg.de (M.S.)

* Correspondence: heigl@kiv.zcu.cz or michael.heigl@th-deg.de; Tel.: +49-991-3615-537

Abstract: Over the past couple of years, machine learning methods—especially the outlier detection
ones—have anchored in the cybersecurity field to detect network-based anomalies rooted in novel
attack patterns. However, the ubiquity of massive continuously generated data streams poses an
enormous challenge to efficient detection schemes and demands fast, memory-constrained online
algorithms that are capable to deal with concept drifts. Feature selection plays an important role
when it comes to improve outlier detection in terms of identifying noisy data that contain irrelevant
or redundant features. State-of-the-art work either focuses on unsupervised feature selection for data
streams or (offline) outlier detection. Substantial requirements to combine both fields are derived and
compared with existing approaches. The comprehensive review reveals a research gap in unsupervised
feature selection for the improvement of outlier detection methods in data streams. Thus, a novel
algorithm for Unsupervised Feature Selection for Streaming Outlier Detection, denoted as UFSSOD,
will be proposed, which is able to perform unsupervised feature selection for the purpose of outlier
detection on streaming data. Furthermore, it is able to determine the amount of top-performing
features by clustering their score values. A generic concept that shows two application scenarios
of UFSSOD in conjunction with off-the-shell online outlier detection algorithms has been derived.
Extensive experiments have shown that a promising feature selection mechanism for streaming data
is not applicable in the field of outlier detection. Moreover, UFSSOD, as an online capable algorithm,
yields comparable results to a state-of-the-art offline method trimmed for outlier detection.

Keywords: feature selection; outlier detection; intrusion detection; network security; machine
learning; online learning; unsupervised learning; streaming data

1. Introduction

The continuous inter-networking of embedded devices in all areas of life is driven by
manifold trends such as the Internet of Things, Software-Defined Everything, Industry 4.0,
and Autonomous Driving and is even further accelerated through disruptive technologies
such as Artificial Intelligence (AI) or Quantum Computing. Those developments not only
benefit cyber adversaries but are also accompanied by a steady increase in the amount of
transferred and processed data, posing enormous challenges towards network security
mechanisms, especially applied Intrusion Detection Systems (IDS). However, current IDS
researches only covers approximately 33% of the threat taxonomy presented in [1]. The
actual percentage might even be lower considering the multitude of degrees of freedom
for IDSs while encountering real-world threats regarding, e.g., architecture, detection type,
operation mode, or their functionality.

With the advent of Machine Learning (ML), a core branch of AI, the detection of
novel network-based attacks has been revolutionized, especially due to the appearance of
Anomaly-based Network IDSs (A-NIDSs). In particular, unsupervised Outlier Detection
(OD) algorithms can help to identify indicators of sophisticated attacks changing their

Appl. Sci. 2021, 11, 12073. https://doi.org/10.3390/app112412073 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7303-113X
https://orcid.org/0000-0003-3801-0389
https://orcid.org/0000-0002-2528-771X
https://orcid.org/0000-0001-6206-2969
https://doi.org/10.3390/app112412073
https://doi.org/10.3390/app112412073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112412073
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112412073?type=check_update&version=2

Appl. Sci. 2021, 11, 12073 2 of 30

behavior dynamically and autonomously to avoid detection or help to uncover policy
violations or noisy instances in data without a priori knowledge. The emerging high-
volume, high-dimensional, and high-speed data in network infrastructures demands an
increasing need for streaming analytics in a record-by-record manner for OD, also known as
online or real-time detection or the detection on Streaming Data (SD). In order to improve
the performance of such algorithms, Feature Selection (FS) can be used to remove noisy,
redundant, or irrelevant features, leading to better prediction values as well as a reduction
of the computational cost.

The focus of this work, with respect to improving online OD, is to identify unsuper-
vised FS algorithms targeting on one side the application in SD and on the other side the
task of OD. To the best of our knowledge, no work has aimed to bring both sides together
so far, thus a conceptualization along with a novel approach, called UFSSOD, is proposed
to achieve unsupervised FS for OD on SD. This work offers the following contributions:

• Substantial requirements for FS in the field of (i) SD and (ii) OD, which are compared
with methods obtained from a comprehensive review of the state of the art in these
areas pointing out the lack of any unsupervised FS method for (i) on (ii);

• Novel conceptualization of unsupervised FS for OD on SD including the discussion
of two operation modes and introduction of UFSSOD, the first (to the best of our
knowledge) unsupervised FS algorithm for OD on SD that is also able to determine
the amount of top-performing features by clustering their score values;

• Extensive evaluation of 3 FS methods on 15 datasets and 6 off-the-shelf online OD
algorithms and the first application of an FS algorithm (UFSSOD) inline with 2 online
OD classifiers operating in 2 settings in a truly online fashion while achieving better
results than their bare versions using all features.

The remainder of this work is organized as follows—Section 2 provides relevant back-
ground for the reader and frames the motivation for the necessity of online unsupervised FS
for OD. An extensive review of the state of the art for unsupervised FS from two different
viewpoints (SD, OD) is provided in Section 3 and compared with thoroughly engineered
requirements for this tasks. In Section 4, details on the conceptualization, operation modes,
and operation principle of UFSSOD can be found to achieve unsupervised FS for OD on
SD. In Section 5, the performance of two representative algorithms for FS with a focus
on SD and OD, FSDS and IBFS is evaluated, and compared with UFSSOD using exten-
sive measurements. The discussion reveals that UFSSOD is comparable to (offline) IBFS
while working online and shows that FSDS cannot be applied for the purpose of OD. The
conclusions are drawn in Section 7 along with a glance on future work.

2. Background

This section illuminates the motivation for this work and provides relevant back-
ground context for the reader. It mainly includes relevant aspects for OD and FS.

2.1. Outlier Detection

As a core part of AI, ML, a relative to computational statistics, data mining and data
science disciplines have an upscaling trend in the field of cybersecurity [2]. It has the ability
to find similarities within a large amount of data such that intrusions creating distinguish-
able patterns within the network traffic can be detected efficiently [3]. A major benefit
is that ML can be used to identify anomalies in the data, in particular by OD methods,
without prior knowledge even within high-dimensionality and massive amount of data
that humans would never be able to recognize. Manifold definitions exist in the literature
for OD, also known as anomaly detection or novelty detection, but can be described in
general as an atypical pattern or observation that significantly deviates from the norm
based on some measure and thus attracts suspicion. Outliers are mainly characterized by
three assumptions: (i) the majority of data is normal, having only a small portion of outliers
(imbalance) which (ii) are statistically different from the normal data (distinction) and (iii)
do not happen frequently (rarity). Referring to typical ML tasks, outliers are often seen as

Appl. Sci. 2021, 11, 12073 3 of 30

noise and are removed during the data preparation stage. However, for some applications,
especially for detecting completely novel malicious activity in network security, the data
points containing outliers are carrying the significant information. In terms of classification,
OD constitutes a special form of imbalanced data where the outlier class shows the proper-
ties stated (i)–(iii) compared to the normal data class. The output can either be a binary
class label y ∈ {normal, abnormal} or a score value y ∈ R that describes the strengths of
anomalousness. The score itself can be used to derive a class label by utilizing a threshold
value. In a later root cause analysis, outlier score values carry more information than a
simple binary value. Thus, we are focusing on OD algorithms in which an outlier score is
assigned for each data object in the set of n objects X = {x1, x2, ..., xn} (Equation (1)) where
each instance consists of a d-dimensional real-valued vector xi = {xi1, xi2, ..., xid} with
x ∈ Rd. This divides X into a set of outliers X+ and inliers X− (X = X+ ⋃

X−). Numerous
methods have been introduced for OD. The most common ones are statistical-, distance-,
clustering-, or density-based techniques. Other methods, including their properties, are
discussed in [4,5].

OD(·) : xi → y ∈ R (1)

2.2. Feature Selection

When applying ML algorithms on high-dimensional datasets one has to deal with
the curse of dimensionality referring to the phenomenon that data becomes sparser in
high-dimensional space. This adversely affects the storage requirements and computational
cost of the algorithms. The process of choosing a subset of significant features FS ⊂ F
from a dataset X with the descriptive features F = { f1, f2, ..., fd} is called FS or attribute
selection. The subset divides the dataset X into X∗ = X ∩FS, thus reducing the dimension
and volume of the information of the dataset processed by the consecutive ML algorithm.
Generally, it formulates a criterion to evaluate a set of features in order to identify redundant
or irrelevant (non-informative) features for the ML task that needs to be removed, which
are deteriorating the performance of the ML algorithm. The output of FS is either a
ranked list of the features or a subset of them. Therefore, in the case of a classification,
a more precise classification result can be achieved while the computational effort can
be limited by minimizing the cardinality of the selected feature set. This results in a
faster, more cost-effective and improved prediction performance. In practice, FS still
mostly depends on expert knowledge. However, with high-dimensional and high-volume
datasets and its complex interwovenness, this is no longer a human manageable task.
Dimensionality reduction could also be achieved by methods such as Principal Component
Analysis (PCA) and Random Projections where higher order matrices are mapped into
ones with lower dimension since at data points in a high dimension only a small distortion
occurs by mapping into a lower dimension with a certain probability. However, a major
disadvantage of this process is that after classification, a root cause analysis, e.g., which
features contributed the most for the classification result, is not possible any more. This
is because of the making of new synthetic features from linear or nonlinear combinations
of the original ones and then discarding the less important. As the physical meaning of
the features are no longer retained by this projection, further analysis is impeded. FS, in
contrast, is simply selecting and excluding given features without changing them such that
for a root cause analysis one can still refer to expert domain knowledge by maintaining
their physical meaning (feature interpretability).

Methods for FS can generally be categorized into wrapper, embedded or filter methods.
Wrapper approaches are seeking for their subset by “wrapping around” FS over a ML
algorithm following the iterative procedure that an original set repeatedly is divided into a
subset which then gets evaluated by calling the subsequent classifier. Depending on the
goodness of the subset, either a new one needs to be generated or the result yields the best
feature subset (stopping criteria). Since the wrapper approach includes a specific induction
algorithm to optimize FS, it often provides a better classification accuracy result than the

Appl. Sci. 2021, 11, 12073 4 of 30

other methods. However, this method is time-consuming considering the search space
for d features of 2d while d is typically very large and strongly coupled with the classifier,
which makes it impractical to be applied to large datasets containing numerous features
and in online settings. Embedded approaches include FS in the training process of the
ML algorithm, thus reducing computational costs due to the classification process needed
for each subset [6]. The filter approach does not require knowledge of the subsequent ML
algorithm and measures the intrinsic statistical properties of the dataset. It can be grouped
into: feature ranking methods assigning weights to features based on their relevancy and
feature-subset-evaluating methods that also involve relationships between features finding
redundancy [7]. However, statistical measures must be carefully chosen based on the
type of input variable and the model outputs. From an online application perspective,
filter approaches seem to be the most promising candidates since they do neither demand
offline training nor rely on multiple iterations. Similar to labeling in ML, FS can be broadly
classified from a supervision perspective into supervised and unsupervised methods with
respect to use or ignore the target variables. Over recent years, unsupervised approaches
have gained attention since acquiring labeled data is particularly expensive in both time
and effort. Furthermore, sufficient label information is usually not available in real-world
applications. With respect to the data perspective, FS can be classified according to [8] into
static and streaming data.

3. Requirements Engineering and Comparison with Related Work

FS has become a mighty tool in the field of network security to enhance the per-
formance of IDS. For better clarity of the plenty of available solutions in this field, this
section has been structured in such a way that the first requirements for FS are engineered.
Secondly, a thorough review of the state-of-the-art work which is structured in two parts is
compared with the requirements manifesting the research gap of FS for OD in a SD setting.

3.1. Requirements with Respect to Feature Selection for Outlier Detection on Streaming Data

Much attention has been paid towards OD on SD in the field of network security
monitoring over the past years since data is increasingly generated, e.g., with high velocity,
in tremendous volume and afflicted with the phenomenon of concept drift due to their
dynamic. Many state-of-the-art works try to come up with new algorithms or try to tune the
algorithm setting in order to improve their classification performance to the best. Most of
them compete on the same (outdated) benchmark dataset but might perform insufficiently
with other data sources or in real-world applications. Due to the technological advancement
in the last years, the amount of unlabeled data generated across many scientific disciplines,
such as text mining, genomic analysis, social media, and intrusion detection has steadily
increased, which demands unsupervised learning, leading to the first requirement [R-FS01].
Apart from its supervision, the application of Automated ML methods [9] is not possible
due to its non-applicability on SD.

If FS is considered in the same setting as online OD, requirements roughly coincide.
Compared to models trained in batch (offline) learning, methods for online OD and for
FS respectively must be more sophisticated in a few points. Especially, training from
imbalanced data from an infinite data stream in a pass-efficient way, meaning one pass
at a time [R-FS02], is a huge challenge since some approaches need to temporarily store
the incoming data. Also the time-varying nature of an infinite data stream compared to a
fixed set might lead to concept drifts. With the different types of concept drifts (sudden,
gradual, incremental, recurring, blips) [10], online processing, especially unsupervised,
will be impeded. Models in batch approaches would quickly be outdated and lead to a
performance degradation such that online algorithms must be able to continuously re-train
or update their model to handle this situation [R-FS03]. Due to the steady growth of
high-dimensional data volumes, offline approaches storing the entire data for training
or scanning the dataset multiple times (many passes over the data) lead to considerable
memory limitations and demand lightweightness [R-FS04]. The major downside of online

Appl. Sci. 2021, 11, 12073 5 of 30

methods in general, especially unsupervised methods compared to their batch opponents,
is the poorer performance when it comes to classifying abnormal and normal data instances.
However, we strongly support the hypothesis in [11], when considering critical streaming
applications as for detecting network-based malicious activity, a fast model, even with
less accuracy, is preferred. However, applying FS shall at least improve the classification
performance of OD methods [R-FS05].

In this work, the focus of FS and OD on SD is not in the context of time-series data as
it is the object in many other research works [12,13]. SD within this context is any flow of
information characterized by incoming instances of data chunks that might be processed
in near real-time. The information of time, which might be a specific piece of data received,
may not represent the time of measurement and may thus not be an important feature
at all. Regarding time-series data, the order and time are fundamental aspects with a
central meaning of the data such that, based on past observations, predictions towards
the future time can be made. It is the goal to detect outlying time-series patterns based
on temporal dependencies, rather than independent outliers in data [14]. More generally,
data streams can broadly be classified into streaming data and streaming features. The
first-mentioned defines incoming data in a record-by-record manner having a static number
of features d while in a feature stream, new features can be generated dynamically. Thus,
the stream {Xt ∈ Rnt×d, t = 1, 2, ...} is a continuous transmission of data instances (data
points) which arrive sequentially at each time step t. The count of features is denoted
as d (dimension) and xt the nt-th d-dimensional most recent incoming data instance at
time t. In the field of cybersecurity and the monitoring of network data, the number of
features is fixed [R-FS06] and can be defined a priori by an expert since incorporating
domain knowledge can help select relevant features to improve learning performance
greatly. For network-based features, one may distinguish between basic features (derived
from raw packet headers (meta data) without inspecting the payload, e.g., ports, MAC or
IP addresses), content-based features (derived from payload assessment having domain
knowledge, e.g., protocol specification), time-based features (temporal features obtained
from, e.g., message transmission frequency, sliding window approaches), and connection-
based features (obtained from a historical window incorporating the last n packets) [15].
Those features are streaming from a single source (single-view) [R-FS07], e.g., a raw network
interface, as statistics from network switching elements or in the form of log-files from
devices. However, a human expert cannot be expected to recognize correlations from the
variety and multitude of multivariate features [R-FS08] occurring in high-dimensional
real-world applications. Typically, this manual feature engineering is a time-consuming
ad hoc process composed of trial and error to determine the features most relevant to the
detection problem, which inhibits the application of ML to network security [3,16]. Thus,
FS is needed, whose output can either be a ranked list of the input features or a dedicated
subset. The former allows a better insight into which features contribute the most in order
to select the top-performing-features [R-FS09].

3.2. Feature Selection for Streaming Data

For the purpose of anomaly detection, we state that the cardinality of features is
known beforehand by a domain expert’s feature engineering process but the number of
data instances is not known or even infinite. Thus, it is impractical to wait until all or a
significant amount of data is available to perform FS. A batch-mode method especially
in highly dynamic networks with concept drifts is not able to select relevant features in a
timely manner. In contrast, solutions such as OSFSMI [17], UFSSF [18] or DOFS [19] are
facing, independent of their supervision, feature streams in which the number of instances
is fixed and the features arrive one-by-one or in groups. In domains where the global
feature space is defined by a domain expert, these methods might only be applicable if
they can fix the number of features and are capable to operate on streaming data.

Much work is dedicatedly tailored towards the clustering task [20–22] which can
immediately be excluded for the application of anomaly detection as a classification task

Appl. Sci. 2021, 11, 12073 6 of 30

on imbalanced datasets. However, other work does not explicitly focus on clustering but
evaluate their approaches applying those algorithms. Therefore, the question arises to what
extent such algorithms can be used for the task of OD. From a supervision perspective,
a supervised FS approach for binary classification on SD called OFS has been proposed
in [23], which is able to learn either on all features of a training data instance as well
as only a small number to select the relevant feature subset. The authors of [24] focus
on data stream mining classification algorithms often applied in machine learning with
applications in network intrusion detection. Their real-time FS method is called MC-NN,
which describes a concept drift detection method for data stream classification algorithms
including the capability of feature tracking. The method can either be applied as a real-time
wrapper or a batch classifier independent of any learning algorithm. However, the authors
state that their study was not concerned with the classification capabilities of MC-NN, but
with the behavior of the underlying model during a concept drift. A similar approach,
which we denote as EaSU, hypothesizes that features can be dynamically weighted in order
to augment the importance of relevant features and diminish the importance of those which
are deemed irrelevant according to observed feature drifts [25]. Therefore they introduce
the concepts of entropy and symmetrical uncertainty in a sliding window approach to
track the relevance of features and could enhance k-Nearest Neighbor, naive Bayesian, and
Hoeffding Adaptive Tree algorithms in a supervised setting.

With a focus on unsupervised FS, a comprehensive and structured review towards
the most referenced state-of-the-art work has been given in [26]. However, the review
does not give any details on the specific domains such as text data, link data, or SD. An
online unsupervised multi-view FS method, called OMVFS, is proposed in [27], which in
addition to the features of FSDS is also capable of handling multi-view data. It performs
unsupervised FS using the concept of nonnegative matrix factorization with sparse learning
and processes incoming multi-view data into several small matrices by using a buffering
technique to reduce the computational and storage cost. FSDS as proposed in [28] is, to the
best of our knowledge, the only unsupervised FS scheme truly operating in single-view on
SD for clustering and classification applications. It utilizes the ideas of matrix sketching
where a sketch of a smaller matrix still approximates its original to maintain a low-rank
approximation of the entire observed data at each time step. Hence, they modified the so
called Frequent Directions algorithm proposed by Liberty [29] and use regression analysis
to generate a feature importance score with each incoming data. In addition, it is space and
time efficient, requiring only one pass over the data.

The related work regarding approaches towards unsupervised FS for SD is compared
to the requirements from Section 3.1 in Table 1. Most of the approaches can be neglected
due to their supervision perspective, their design towards streaming features rather than
SD, their focus on clustering tasks or their need for training instances. Two approaches,
FSDS and OMVFS, even if evaluated on clustering algorithms, seem promising to function
on the classification class. However, it must be evaluated if they are able to produce valid
results in imbalanced data for the purpose of OD. Although OMVFS might be capable of
functioning in single-view, it is designed for multi-view. Therefore, as of now, we set our
focus on FSDS.

Appl. Sci. 2021, 11, 12073 7 of 30

Table 1. Comparison of existing FS work for SD with the requirements defined in Section 3.1 (3 and
7 denote that the requirement is either fulfilled or not, ∅ denotes missing information to analyze the
respective requirement, (++/+/−) for R-FS04 and R-FS08 are denoting, as objectively as possible,
how well the requirement is fulfilled, R-FS02 and R-FS03 are combined since R-FS03 is a phenomenon
associated with R-FS02 and the existing work in this table fulfills both equally).

Work

R
-F

S0
1

R
-F

S0
2/

R
-F

S0
3

R
-F

S0
4

R
-F

S0
5

R
-F

S0
6

R
-F

S0
7

R
-F

S0
8

R
-F

S0
9

OSFSMI [17] 3 3 − 7 ∅ 3 ++ 3

UFSSF [18] 3 3 ++ 7 7 3 − 7

DOFS [19] 3 3 − 7 7 3 + 7

OFS [23] 7 3 ++ 7 3 3 ++ 7

MC-NN [24] 3 3 ∅ 7 3 3 ++ 3

EaSU [25] 7 3 ++ 7 3 3 + 3

OMVFS [27] 3 3 ++ 7 7 3 ++ 3

FSDS [28] 3 3 ++ 7 3 3 ++ 3

3.3. Feature Selection for Outlier Detection

FS for IDS must be able to determine the most relevant features of incoming data, e.g.,
network traffic, to minimize the cardinality of the set of selected features, which affects
their effectiveness without dropping features indicating abnormal behavior. A review
on FS algorithms for A-NIDS can be found in [30] dividing them into bio- and non-bio-
inspired ones. However, the authors do not focus on the supervision perspective, thus,
their reviewed work only leverages different supervised FS methods. None of the reviewed
approaches seem to address the requirements defined in Section 3.1. This is discussed by
the authors since most of the methods are based on the wrapper nature or on a combination
of FS algorithms, which increases the computation and time complexity.

A lot of FS methods [31–35] within the context of OD, even recent ones [36–38], are
operating supervised. Those approaches are mainly performing multiple evaluations due
to their wrapper nature on a dedicated dataset typically, KDD’99 or NSL-KDD, to test
different feature subsets using a certain classifier. Within their setting, they achieve the
best subset of features, resulting in an optimal classification performance. However, facing
highly dynamic networks with large volumes of data and high velocity, an analysis is
necessary, which is beyond the aforementioned approaches. Some of the authors even
state that their approaches take a lot of time to train [35] or to use other classifiers and
verify them under more realistic environments [33]. However, with the improvements
mentioned in the outlook of [35], it is the only work in the field of FS for OD considering
support for online processing even though still being of supervised nature. For the rest of
this section, we set our focus on unsupervised approaches since those are more meaningful
for real-world applications of OD methods.

A limited amount of papers are dealing with FS approaches for the purpose of OD
in an unsupervised nature. The algorithm in [39], denoted in this article as FS-CVI, uses
a genetic algorithm to optimize a cluster validity index. This is a measure of how well a
clustering algorithm manages to identify and assign clusters in a dataset, over a search space
consisting of feature subsets. Classification based on the proposed subsets from the genetic
algorithm is performed in such a way that clusters are being built which are representing
legitimate traffic and others more prevalent pertaining to intrusions. An unsupervised
backward elimination FS algorithm based on the Hilbert-Schmidt independence criterion,
named BAHSIC-AD, is proposed in [40]. The authors compare their approach with a
recent Spectral Ranking for Anomalies (SRA) algorithm and show that a combination of
SRA and BAHSIC-AD is able to detect point, collective, and contextual anomalies. Their
evaluation is performed on real-world datasets taken from various application domains.
However, the field of cybersecurity with intrusion detection is not covered. With a focus
on categorical features, ref [41] proposed a method that we denote as MI-FS based on

Appl. Sci. 2021, 11, 12073 8 of 30

mutual information measure and entropy computation for FS that is employed using two
OD methods: AVF and Greedy method. Thus, within this filter approach, categorical
features are selected that expect to highlight the deviations characterizing the outliers
with minimum redundancy among them by performing feature-wise entropy computation.
Also aiming for categorical data, ref [42] proposes CBRW_FS, a coupled biased random
walks approach providing feature weights for categorical data with diversified frequency
distributions, and in [4] a Coupled Unsupervised Feature Selection (CUFS) framework
instantiated into a parameter-free Dense Subgraph-based Feature Selection (DSFS) method.
With their instantiation called CINFO in [43], the authors further developed CUFS by using
unsupervised discretization methods like equal-width and equal-frequency to adopt the
methods to numeric data rather than categorical data. Another approach is given in [44]
with Unsupervised Feature Selection and Cluster Center Initialization, denoted in this work
as UFS_CCI. It derives feature scores as the difference of feature entropy from unlabeled
data by computing the ratio of the maximum count of occurring values by the total amount
of samples. Assuming that the value of the result is in between a threshold range, UFS_CCI
considers the feature to be non-redundant. However, the main focus of this work lies on
clustering samples with reduced dimension for intrusion detection and less on feature
relevancy for OD. In CINFO an outlier detector generates scores in an unsupervised fashion
that are fed into a supervised learning sparse Lasso regression based on pseudo-labels
from outlier candidates. Those steps are executed in an iterative manner to build a sparse
sequential ensemble OD framework and is even further improved by bagging. Although
working unsupervised overall to obtain a dependent set of an OD and FS model, it requires
all of the data objects beforehand. Similarly, ODEFS proposed in [45] integrates OD and FS
into a combined framework by also using ideas from [43]. The ODEFS framework consists
of multiple feature learning components whose individual outlier scores based on diverse
feature subsets are weighted together in a final score. Therefore, (i) outlier thresholding
based on Cantelli’s inequality using the results from the outlier detector, in this example
the distance-based LeSiNN, is applied to obtain possible outlier candidates. Each feature
learning component (ii) randomly chooses unlabeled examples from the initial data and
from the set of outlier candidates to be fed into a pairwise ranking formulation that embeds
FS into OD. The training process (iii) utilizes the thresholded self-paced learning approach
to learn example and feature weights which will in (iv) be used to compute the final score
by the idea of boosting to combine the outlier score vectors with associated loss as weights.
Although the approach by ODEFS seems promising, it is designed to know the input data
beforehand and heavily relies on a training phase. Thus, an application in the context
of SD is forfeited. The work of [46] exploits the strengths of the widely known Isolation
Forest (iForest) OD algorithm [47] to handle large data size and high dimension with many
irrelevant features while having the potential to identify those to reduce dimensionality.
Thus, their proposed method, IBFS, calculates feature imbalance scores using an entropy
measure during the training process of iForest and is immune to feature scaling. Features
are ranked in a descending order according to their feature scores. However, the authors
did not discuss how to select the top-features rather than evaluating their approach on
multiple settings in an offline fashion.

The related work regarding approaches towards unsupervised FS for OD is compared
to the requirements from Section 3.1 in Table 2. Most of the approaches can be ignored
due to their supervision perspective, their demand for training data, or their wrapper-like
nature that are highly tuned and optimized for a dataset and the ML classifier. Only a few
methods are testing their approach on different data sources or with different classifiers.
Good subsets of features for the purpose of OD are obtained after multiple iterations in a
supervised manner or offline with training data, which are often computationally costly.
Most of them are leading the argument to use FS in order to reduce the performance
costs for OD but do not discuss the significant costs necessary to obtain a relevant subset
that is tailored to one dataset and a corresponding classifier. Despite its supervision, the
only work considering the application in online processing in their future work is [35].

Appl. Sci. 2021, 11, 12073 9 of 30

In real-world applications with highly dynamic networks, FS must work online to deal
with concept drift, tailored to OD without multiple iterative validation rounds, and must
function unsupervised because of the lack of labeled data. IBFS is the only approach that
might be able to satisfy those requirements since it works unsupervised and is tailored for
the purpose of OD by exploiting the nature of iForest. Numerous recent advancements
of iForest in the streaming setting [48–50], in particular, let IBFS constitute a promising
candidate for FS on SD.

Table 2. Comparison of existing FS work for OD with the requirements defined in Section 3.1 (3 and
7 denote that the requirement is either fulfilled or not, ∅ denotes missing information to analyze the
respective requirement, (++/+/−) for R-FS04 and R-FS08 are denoting, as objectively as possible,
how well the requirement is fulfilled, R-FS02 and R-FS03 are combined since R-FS03 is a phenomenon
associated with R-FS02 and none of the existing work in this table fulfills both).

Work

R
-F

S0
1

R
-F

S0
2/

R
-F

S0
3

R
-F

S0
4

R
-F

S0
5

R
-F

S0
6

R
-F

S0
7

R
-F

S0
8

R
-F

S0
9

FS-CVI [39] 3 7 ∅ 3 3 3 − 7

BAHSIC-
AD [40] 3 7 − 3 3 3 ∅ 3

MI-FS [41] 3 7 ++ 7 3 3 + 3

UFS_CCI [44] 3 7 ∅ 7 3 3 ++ 7

CBRW_FS [42] 3 7 − 7 3 3 + 3

CUFS-DSFS [4] 3 7 − 7 3 3 + 3

CINFO [43] 3 7 + 3 3 3 ++ 3

ODEFS [45] 3 7 + 3 3 3 ++ 3

IBFS [46] 3 7 ++ 3 3 3 ++ 3

4. Unsupervised Feature Selection for Streaming Outlier Detection

Existing work targeting FS for SD is mainly supervised and for the clustering, re-
gression, or classification task on balanced data. FS for OD is either supervised or in the
unsupervised case, where even fewer publications are available [4], not capable of coping
with SD. Most of the latter require a dedicated training phase, thus making it impossible to
function for SD in near real-time. However, there is limited work of FS for OD because it is
challenging to define feature relevance given its unsupervised nature. Some work defines
relevancy in the context of correlation between features, which is not really useful for
detecting outliers since some features can be strongly relevant for OD but do not correlate
to others. In addition, if there is no dedicated batch training phase, as is the case with SD,
FS becomes a challenging task. To the best of the authors’ knowledge, unsupervised FS
for OD on SD is a completely new field. Thus, we propose UFSSOD referring to Unsu-
pervised Feature Selection for Streaming Outlier Detection that can be applied to improve
off-the-shell online OD methods.

However, the two following assumptions are made in order to deal with the problem
that is mostly neglected in the literature due to either the supervised nature or the batch
approach but is present with FS on SD within the context of OD. Discarding irrelevant or
redundant features in time t due to unsupervised and streaming FS might contain outliers
in time t + i. Therefore we assume that (i) attacks are complex and indicators of attacks
resulting in outliers might affect not only the one feature being identified as irrelevant or
redundant, and is thus dropped, and (ii) attacks and their affecting outliers predominantly
correspond to the same features. Particularly the second could be shown in [51] where
some features have been more significant over multiple attack scenarios, e.g., B.Packet Len
Std, Flow Duration, or Flow IAT Std. Most of the state-of-the-art work of FS within the
context of OD does not discuss this dilemma since they are either working supervised
and know which features contain the outliers or they are working in an offline setting,
having training data available. Therefore they know all the data including those containing
outliers beforehand. In the next two sections, we present the conceptualization alongside

Appl. Sci. 2021, 11, 12073 10 of 30

operation modes for UFSSOD and provide its internal functionality with regard to cluster
feature scores in order to obtain the top features for OD on SD.

4.1. Operation Principle

The operation principle of UFSSOD is shown in the block diagram of Figure 1. Data
instance (data point) xt with dimension d of the data stream {Xt ∈ Rnt×d, t = 1, 2, ...}
streams into the module UFSSOD at each time step t composed of the global feature space
F = { f1, f2, ..., fd}. Thus, it is capable of computing a ranked list of features contributing
the most for the purpose of OD leading to a subset FS = { fi1, fi2, ..., fiγ} of the top-γ-
features for each time step t where a higher value of fi indicates a highly contributing
feature for the purpose of OD. With respect to unsupervised feature selection on streaming
data for the purpose of outlier detection, UFSSOD’s main objective is to reduce the set of
features in xt obtaining x∗t according to Equation (2) by using the subset FS ⊂ F . Besides,
if desired, UFSSOD is able to produce possible outlier candidates by providing scaled
outlier scores ỹ0 for each xt without increasing the overall complexity in big O notation
referring to [52]. Algorithm 1 provides a high-level overview of UFSSOD’s operation
principle consisting of the scoring and clustering functionality for feature scores, denoted as
ufssod_scoring and ufssod_clustering. The internal working of both key modules is described
in detail in Section 4.3.

x∗t = xt ∩ FS (2)

xt Xt

F={f1,f2,f3, ,fd}

 ufssod_scoring

UFSSOD

y0 Moving Mean /
Standard
Deviation

Scaling
y0 ~

LodaCont.

sf

μt, σt

 ufssod_clustering

Moving Mean
sf
-

flag

γ

ckmeans_1d_dp
indices

indices FS
xt*

Figure 1. Block diagram and operation principle of UFSSOD.

Algorithm 1: High-level operation principle of UFSSOD.
Input: A sample xt and a f lag to control ufssod_clustering
Output: A reduced sample x∗t based on feature subset FS and the scaled outlier

score value ỹ0
1 ỹ0, s̄ f ← ufssod_scoring(xt) .referring to Algorithm 2
2 if flag is set then
3 indices← ufssod_clustering(s̄ f) .referring to Algorithm 3
4 else
5 indices← the lastly acquired indices

6 x∗t ← xt[indices]
7 return x∗t , ỹ0

4.2. Operation Modes

The conceptualization for an online unsupervised FS in an application for streaming
OD is depicted in Figure 2 showing the sequential operation mode for UFSSOD. Inde-
pendent of the applied operation mode, in the starting point t0, where no FS has been

Appl. Sci. 2021, 11, 12073 11 of 30

performed, or the initialization of each algorithm takes place, γ is set to d in order to
work with all features. The module Unsupervised Online OD operates an online capable
unsupervised OD algorithm, e.g., xStream [14], Loda [52] or iForest_ASD [53], and uses the
proposed subset FS to boost its performance, yielding a more precise outlier score yi based
on x∗t . One might also apply multiple classifiers in parallel in the Unsupervised Online OD
module to exploit the power of a combination of m individual classifiers depending on the
available resources. For this, one might define a certain resource budget r comprising of
computational resources such as CPU or wallclock time as well as memory usage and let m
be a function of r. Thus, even during runtime, some classifiers might be turned off for the
sake of resource preservation. The outlier scores y0 and yi are normalized using Gaussian
Scaling proposed by [54] according to Equation (3) in which er f () is the Gaussian Error
Function, which is monotone and ranking stable.

ỹ = max{0, er f (
y− µt

σt
√

2
)} (3)

The moving average µt and standard deviation σt of the outlier scores until time t
are obtained by applying, e.g., the well-known Welford’s algorithm [55] or one of the
methods proposed in [13]. Scaling is necessary when combining algorithms of different
nature with different characteristics. For instance, operating LodaTwo Hist. with different
window sizes will result in different averaged score values due to the different state of
knowledge on normal data. With increasing window sizes, the model becomes more
accurate while seeing larger amounts of normal data, which are then scored less compared
to models obtained from smaller window sizes. With the mean and standard deviation
proportion of the Gaussian Scaling this difference will be eradicated and with the Error
Function the scores are tailored to the interval between 0 and 1. With the normalized outlier
scores, a final score can be computed, which might also be weighted. The confidence
level of the Unsupervised Online OD module is typically higher than those of UFSSOD,
since it operates on the reduced representation of a sample x∗t and thus one might give a
higher weight to its score. For this, Equation (4) can be used depending on the weights
g0 for UFSSOD and gi for each classifier (typically gi > g0) where g0 + ∑i gi = 1 and
ỹ ∈ [0, 1] applies. Using domain expertise, a reasonable threshold can be determined over
runtime, yielding a decent classification performance that assigns a binary value from the
set {normal, abnormal} for each ỹ.

ỹ = g0ỹ0 +
m

∑
i=1

gi ỹi (4)

UFSSOD

Σ
y0 (xt)

xt Xt

F={f1,f2,f3, ,fd} FS={fi1,fi2,..,fi γ }

xt*

y (xt)
~

~yi (xt*)
Unsupervised

Online OD

~

Figure 2. Conceptualization of module interaction for unsupervised FS for OD on SD (sequential
approach).

Since the UFSSOD module is able to provide different feature scores at each time step
t, resulting in possible other top-γ-features than at time t− i, the downstream applied
Unsupervised Online OD module might be capable of dealing with those changing features.
If this is the case, the setup can truly work online, meaning that UFSSOD provides an
updated version of the feature subset FS with a potentially changing cardinality that is
used by the Unsupervised Online OD module to detect outliers in each t. To the best
of our knowledge, only xStream is able to handle this situation. Moreover, xStream not
only handles a varying cardinality of the feature subsets but is also able to deal with
completely newly occurring features. However, the latter is not the focus of this work
since for domain specific applications features are assumed to be known beforehand. Since

Appl. Sci. 2021, 11, 12073 12 of 30

most of the state-of-the-art unsupervised OD algorithms are operating on a fixed set of
features with a fixed cardinality, a windowed approach can be utilized if the subsequently
applied online OD algorithm is able to dynamically change its model during runtime. Thus,
it can replace the old feature subset with the newly proposed one after the current time
window elapsed. Possible algorithms would be iForest_ASD, which rebuilds its forest after
a certain condition is met, thus also allowing to rebuild it with a different feature subset,
or LodaTwo Hist. and HS-Trees using windowing where models are replaced with the ones
currently built and the ones that will be built can use the current feature subset. With
respect to LodaTwo Hist., the old histograms built and classified with FS(t−i) will be replaced
with the new histograms using FS(t), also allowing to change the cardinality (different
top-γ-features).

If this sequential operation limits the throughput, a parallel approach can be utilized
where both modules UFSSOD and Unsupervised Online OD work in parallel. As depicted
in Figure 3 the online OD algorithm for each t operates with the previously proposed
subset FS2, while the UFSSOD module continuously proposes a new FS, which is stored
within FS1. The Unsupervised Online OD module can now decide whether it changes its
feature subset for each t by using the one proposed by UFSSOD in t− 1 switching between
FS1 and FS2 or switching subsets again in a windowed fashion. The latter seems more
convenient if the setup must not truly work online since the OD algorithm can work with
the full throughput using the static feature subset until its model gets replaced or updated
with the new subset, which was generated within the current time window. Furthermore, it
should be noted that ufssod_clustering with respect to Algorithm 2 must not necessarily be
performed for each sample in order to preserve resources while operating in the windowed
mode. Thus, continuously ufssod_scoring is performed but ufssod_clustering is only
performed if the subsequent classifier demands a new feature subset. With respect to
LodaTwo Hist. and Figure 3, the old histograms built and classified with FS2 will be replaced
with the new histograms switching to FS1 when the window size is reached, whereas
UFSSOD continuously updates FS1 until switching.

xt Xt

F={f1,f2,f3, ,fd}
y (xt)

y0 (xt)

yi (xt*)
Σ

 FS1

 FS2

FS={fi1,fi2,..,fi γ }

UFSSOD

Unsupervised
Online OD

 xt*

~

~ ~

Figure 3. Conceptualization of module interaction for unsupervised FS for OD on SD (parallel
approach).

Algorithm 2: Scoring functionality of UFSSOD—ufssod_scoring().
Input: A sample xt
Output: The scaled outlier score ỹ0 and the averaged feature scores s̄ f

1 y0, s f ← Loda_cont.update_score(xt)
2 µt ← outlier_score.moving_mean(y0)
3 σt ← outlier_score.moving_sd(y0)
4 ỹ0 ← argmax(0, erf(y0−µt

σt
√

2
))

5 s̄ f ← feature_scores.moving_mean(s f)
6 return ỹ0, s̄ f

4.3. Model for Scoring and Clustering Features

In this section, details of the internal working of UFSSOD (Figure 1) with regard to
the core modules, ufssod_scoring() and ufssod_clustering(), is provided. Motivated by the
functionality of Loda to rank features according to their contribution, UFSSOD leverages an

Appl. Sci. 2021, 11, 12073 13 of 30

adapted version of LodaCont. that continuously processes the feature scores for ranking and
proposing the top-γ-features. Besides, it is able to provide outlier scores for each incoming
xt. It fulfills all the requirements of FS for SD and OD stated in Section 3.1. Also encouraged
by IBFS, which exploits the training process of iForest for FS, we aimed to bring the nature
of an online OD algorithm into this field as well but for the SD context. However, Loda
seems more appropriate since it handles high-dimensional data more efficiently and is able
to handle concept drifts. We see ourselves validated in our approach, since the evaluations
of [14] prove that projection-based methods, as is the case with Loda, are advantageous in
high dimensions with many irrelevant features, because the features relevant for OD are
less likely to be selected by other methods that operate with F . Therefore, sorting out those
irrelevant features from high-dimensional data will significantly aid other OD methods
by increasing their performance. Furthermore, the author of Loda already showed the
capability of the algorithm to identify meaningful features in his experiments.

Our basis for LodaCont. is the Appendix: online histogram stated in [52]. However, it
must be noted that both of its Algorithms 3 and 4 contain minor mistakes. In the former
zmax is computed by the min instead of the correct max function and referring to the latter,
the formula for the probability p(z) should depend on a weighted average of the bin counts.
With the formula given, one obtains negative results in the case for negative zi and zi+1. A
corrected version has also been proposed by [56] such that for instance if z is closer to zi,
p(z) gets weighted closer to p(zi) accordingly (Equation (5)).

p(z) =
(zi+1 − z)mi + (z− zi)mi+1

M(zi+1 − zi)
(5)

Algorithm 3: Feature clustering of UFSSOD—ufssod_clustering().
Input: The averaged feature scores s̄ f and optional=(γ, γmin, distance)
Output: The set of indices of FS for xt to obtain x∗t

1 if γ is set then
2 return indices← first γ of argsort(s̄ f , descending)

3 if γmin not set then
4 γmin ←

√
|s̄ f |

5 result← ckmeans_1d_dp(s̄ f)
6 while result.|cluster1| < γmin do
7 k← result.kopt - 1
8 result← ckmeans_1d_dp(s̄ f , k)

9 indices← result.cluster1
10 if distance == true then
11 cr1 ← Ø cluster1/2
12 cr2 ← Ø cluster2/2
13 i← 1
14 while cri + cri+1 > center_distance(clusteri, clusteri+1) do
15 i← i + 1
16 cri+1 ← Ø clusteri+1/2
17 indices← indices + result.clusteri+1

18 return indices

The one-tailed two-sample t test has been proposed by the author of Loda, referring to
Equation (4) in [52] to measure the statistic significance of each feature to its contribution of
a sample’s anomalousness. Apart from the complexity of LodaCont. in time with O(hd−

1
2)

and space O(h(d− 1
2 + b)), referring to the naïve implementation of continuously updated

histograms where h is the number of histograms and b the number of histogram bins,
the identification of relevant features does not increase the complexity. This is because

Appl. Sci. 2021, 11, 12073 14 of 30

the statistical test performed is linear with respect to the number of projections h and
number of features d and only increases the complexity in big O notation by a negligible
constant [52]. We have integrated the functionality of relevant feature identification of
LodaCont. in UFSSOD as a fundamental part and are able to produce feature scores s f i(t) for
the ith feature fi at each time step t for one sample xt, resulting in a one-dimensional array
s f = {s f 1, s f 2, ..., s f d} of d feature scores per sample. Similarly to the continuous updating
of the histograms, we propose to continuously update the feature scores for each sample by
incremental averaging. There are various approaches discussed in [13], e.g., Exponentially
Weighted Moving Average, that are better able to cope with occurring concept drifts in
the feature scores while incrementally averaging them. As of now, however, we apply
the incremental average as given per Equation (6) with a continuous counter value nt
for each new data instance, in order to obtain the averaged array of feature scores s̄ f
but reserve the right to use more advanced moving methods in future work. While only
preserving d values for the current average scores, one value for the continuous counter nt
and performing d updates of the scores, both the space and time complexity for each feature
score averaging is O(d) when applying Welford’s algorithm. This does not significantly
increase the overall complexity of UFSSOD since d is fixed. A summary of the scoring
functionality of UFSSOD for both the outlier score and the feature scores, inclusive of their
processing, is shown in Algorithm 2.

s̄ f i(t) =
1
nt
(s̄ f i(t−1)nt−1 + s f i(t)) (6)

Since the features within the subset are not only influencing the efficiency of the OD
task but also the cardinality of the set significantly, the number γ referring to the top-features
is crucial. However, this is an optimization problem where the intention is to optimize the
solution in such a way that the highest accuracy can be reached together with the lowest
execution time achieved, e.g., by a smaller number of features. According to [8] it is still a
challenging and known problem to determine the optimum number of features to select.
Since this mostly applies for the supervised and offline case, we are stating that finding an
optimal solution and therefore a point of equilibrium between the best classification with
the lowest computational performance is impossible in the online setting.

When the Unsupervised Online OD module demands a new subset of the top-γ-
features, UFSSOD clusters s̄ f to obtain the cluster(s) with the top scoring features. Even
if clustering in one-dimensional space is not as trivial as it sounds, some algorithms are
capable of solving this task, e.g., by applying Kernel Density Estimation (KDE), having
a strong statistical background and seeking for local minima in density to split the data
into clusters. However, we are proposing the k-mean adaption for one-dimensional clus-
tering Ckmeans.1d.dp [57,58]. It achieves O(kd) by the optimization proposed in [58] for
both time and space complexity, where k refers to the number of clusters built. Three
improvements have been made for Ckmeans.1d.dp for the application within UFSSOD. We
have (i) increased the factor of the Log-Likelihood within the BIC (Bayesian Information
Criterion) computation, relevant to finding the optimum number of clusters k in order to
better cluster the feature scores by more distinct spacing between data points. To avoid the
case of too few feature scores in the top cluster yielding a small γ, we (ii) add a minimum
constraint of having at least γmin feature scores in the top cluster. Thus, Ckmeans.1d.dp is
performed as long as |cluster1| ≥ γmin by successively reducing k starting from the initial
optimum number of clusters kopt. This adds a negligible constant to big O notation in
the worst case where |cluster1| = 1 of γmin − 1. For γmin, we are proposing a minimum
number of d

√
de features, which is often used as a rule of thumb for selecting features

and achieved promising results in our evaluation. However, γmin can also be freely set
by the domain expert. Since γmin only states the least requirement and the second, third,
etc. best clusters might have promising feature scores as well. We are (iii) also proposing
to check the distances between the cluster centers and their radii, which are defined by
the utmost feature score from the cluster center as depicted with semicircles in Figure 4.

Appl. Sci. 2021, 11, 12073 15 of 30

Thus, not only the features of the cluster with the top scoring features cluster1 are returned,
with |cluster1| ≥ γmin, but also those where the distance between the centers of clusteri
and clusteri+1 is less than the sum of radii of clusteri and clusteri+1. Within the example
of Figure 4 for d = 20, d

√
de = 5, |cluster1| = 6 the feature scores of cluster1 are returned

with (ii) and γ = 6 whereas those of cluster1 + cluster2 are returned with (iii) and γ = 11.

0 0.2 0.4 0.6 0.8 1

cluster1
cluster2cluster3cluster4

s̄ f i(t)

Figure 4. Visualization aid of ufssod_clustering with four exemplary clusters and semicircles around
the cluster centroids.

It is again noted that the cardinality has a significant impact on the classifier since
some even perform well with only a few features [26,51] whereas others operate best in
high dimensions [14] or fluctuate with a varying number of relative features [52]. However,
depending on the classifier used, one might adapt γmin or not use the cluster approach at
all by setting γ to a certain value. UFSSOD then ranks the feature scores in descending
order, e.g., by the widely accepted Quick Sort or Merge Sort algorithm, and returns the
top-γ-features. Depending on the chosen setup, in terms of complexity, we propose Merge
Sort since the space and time complexity of d feature scores, even in the worst case, is O(d).
A summary of the clustering functionality of UFSSOD is shown in Algorithm 3.

5. Evaluation

This section gives a glance at the experimental setup used for evaluation. First the test
environment is presented, followed by information on the dataset collection used and a
description of the evaluation methodology.

5.1. Test Environment

Experiments were conducted on a virtualized Ubuntu 20.04.1 LTS equipped with 12
x Intel(R) Xeon(R) CPU E5-2430 at 2.20 GHz and 32 GB memory running on a Proxmox
server environment. All programs are coded in Python 3.7. Unless otherwise stated,
commonly used Python libraries, e.g., numpy, are used for instance with the argsort
function applying Merge Sort to sort the feature scores. We implemented ufssod_clustering
in Python according to Ckmeans.1d.dp [58] with only the relevant functions for BIC and
the one-dimensional cluster-routine and adapted it with respect to Section 4.3. As of now,
however, we did not implement the return of additional clusters based on the cluster center
distance verification.

For FS, we integrated the code (https://github.com/takuti/stream-feature-selection,
accessed on 11 February 2021) for FSDS [28] and implemented IBFS according to the
original paper [46] in the code (https://github.com/mgckind/iso_forest, accessed on 11
February 2021) of iForest. UFSSOD has been implemented according to Section 4.3 in
Python as well.

For online OD on SD, we have chosen six off-the-shelf ensemble algorithms. Most
of them have been shown to outperform numerous standard detectors [59]. The Python
framework called PySAD (https://pypi.org/project/pysad/, accessed on 19 February
2021) (Python Streaming Anomaly Detection) proposed in [60] is used to provide multi-
ple implementations for online/sequential anomaly detection. It contains among others
RS-Hash [61], HS-Trees [62], iForest_ASD [53], Loda [52], Kitsune [63] and xStream [14].
However, some of them are not yet fully implemented, e.g., iForest_ASD, or their of-
fline (batch) implementation is included, taken from PyOD [64], rather than their online
counterparts as for Loda and xStream. Thus, we integrated RS-Hash, HS-Trees, and
Kitsune from PySAD and used our own Python implementation of LodaTwo Hist.. We

https://github.com/takuti/stream-feature-selection
https://github.com/mgckind/iso_forest
https://pypi.org/project/pysad/

Appl. Sci. 2021, 11, 12073 16 of 30

have avoided the use of the Rozenholc formula, stated by [52], to obtain the optimum
number of bins per histogram and used default numbers of histograms and bins for all
runs. Furthermore, iForest_ASD from scikit-multiflow [11] and the iMForest implementa-
tion (https://github.com/bghojogh/iMondrian, accessed on 19 February 2021) provided
along with [48] was added for the online case. However, iForest_ASD was not included in
the measurements due to (i) the lack of properly setting the drift threshold depending on
the used datasets, which led to intense time-consuming measurements, and (ii) our desire
to rely on the more advanced and recent iForest streaming competitor iMForest. xStream
was taken from the StreamAD library (https://pypi.org/project/streamad/, accessed on 19
February 2021) providing the streaming version rather than the static one, as with PySAD.
Unless otherwise stated, the default hyperparameters of the algorithms have been used
and outlier thresholds have been fixed for all measurements. In order for the classifiers
not to start their classification with empty models, all measurements are first initialized by
processing 40% of the same input data later used for classification. This approach seems
legitimate to us since we do not focus on the actual performance of each individual online
OD classifier but rather want to evaluate the impacts of FS to them.

In terms of evaluation metrics, for each measurement, we computed the typical
parameters of the confusion matrix for binary classification, True Negatives (TN), False
Negatives (FN), False Positives (FP), and True Positives (TP) to derive the harmonic mean
of precision and recall, denoted as the F1 score. It represents the classification performance
of an algorithm and can be computed by Equation (7). Compared to other work that relies
on the ROC (Receiver Operating Characteristic Curve), AUC (Area under the ROC), or only
accuracy metric, e.g., [34,36,46], we see that the F1 score is more appropriate for OD since,
e.g., the false positive rate used in the ROC metric depends on the number of TN, whose
proportion in OD is typically quite large. Hence, the ROC curve tends to be near 1 when
classifying imbalanced data and thus is not the best measure for examining OD algorithms.
A good F1 indicates low FP and FN and is therefore a better choice to reliably identify
malicious activity in the network security domain without being negatively impacted by
false alarms.

F1 =
TP

TP + 1
2 (FP + FN)

(7)

Furthermore, we have measured the average runtime per OD algorithm, denoted as
avg_t, as a representative metric for the computational performance. Thus we accumulated
the elapsed time for individual steps necessary to perform, e.g., partial fitting or prediction
to derive the average runtime after multiple iterations for processing a particular dataset.
Having a tradeoff between the classification and computational performance, the third
metric is the ratio of F1/avg_t.

5.2. Data Source

Rather than relying on a security-domain specific single dataset such as KDD’99, NSL-
KDD or a predestined younger one CSE-CIC-IDS2018 (https://registry.opendata.aws/cse-
cic-ids2018/, accessed on 5 March 2021), we have deliberately chosen real-world candidate
datasets from the ODDS (http://odds.cs.stonybrook.edu/about-odds/, accessed on 5
March 2021) (Outlier Detection DataSets) Library [65] which are commonly used to evaluate
OD methods for various reasons. In recent years, the majority of state-of-the-art IDS
datasets have been criticized by many researchers since their data is out of date or do not
represent today’s threat landscape [51,66,67]. Even if CSE-CIC-IDS2018 overcomes some
shortcomings, it was not optimal for the extensive number of measurements performed
(Figure 5) due to its enormous number of data instances in multiple files. Furthermore,
we wanted to stress test UFSSOD with very dynamic datasets, meaning that outliers
might occur in various features, which are typically not the same. As could be shown
with its predecessor, the CICIDS2017, only a subset of three to four features per attack
is enough to describe it best [51], making it look quite static. With an ensemble of the

https://github.com/bghojogh/iMondrian
https://pypi.org/project/streamad/
https://registry.opendata.aws/cse-cic-ids2018/
https://registry.opendata.aws/cse-cic-ids2018/
http://odds.cs.stonybrook.edu/about-odds/

Appl. Sci. 2021, 11, 12073 17 of 30

15 datasets from ODDS shown together with their characteristics in Table 3, we have
focused on a variety of datasets in terms of length, dimension, and outlier percentage from
multidisciplinary domains. Except for lympho and vertebral, which have been neglected
due to their insignificant number of data instances or dimensions, those datasets are also
used by PyOD for benchmarking. Furthermore, to reduce the processing runtime of each
OD algorithm we truncated mnist, musk, optdigits, pendigits, satellite, satimage-2, and shuttle
while mostly maintaining its outlier percentage.

Table 3. Characteristics of the utilized and partially adapted datasets from ODDS [65].

ID Dataset # Instances # Dimensions Outliers (%)

1 arrhythmia 452 274 14.6
2 cardio 1831 21 9.6
3 glass 214 9 4.2
4 ionosphere 351 33 35.9
5 letter 1600 32 6.25
6 mnist 2603 100 26.9
7 musk 1000 166 9.7
8 optdigits 2216 64 6.8
9 pendigits 2000 16 2.3
10 pima 768 8 34.9
11 satellite 3000 36 31.1
12 satimage-2 1750 36 1.0
13 shuttle 3000 9 7.9
14 vowels 1456 12 3.4
15 wbc 378 30 5.6

Datasets

10 iterations

FSDS (k=1) γ = 25%

IBFS

UFSSOD

γ = 50%FSDS (k=2)

FSDS (k=8)

ID=1

ID=2

ID=15

γ = 75%

γ = 100% (full_dim)

γ = ufssod_clustering

RS-Hash

HS-Trees

Kitsune

xStream

iMForest

Loda Two Hist.

Measurement

Measurement

Measurement

Measurement

Measurement

Measurement

random

Figure 5. Flowchart of the evaluation measurements.

5.3. Evaluation Methodology

For the comparison of FSDS and IBFS, as representatives of FS for SD and OD, with
UFSSOD, our methodology is shown in a flow chart in Figure 5. For each dataset of Table 3
we have performed extensive measurements by first setting an FS algorithm. It must be
noted that FSDS is relying on the number of singular values k. The authors of FSDS state
that this parameter should be equal to the number of clusters in the dataset. However, since
our focus is on classification rather than on clustering, we have performed measurements
with different values for k to test the applicability of FSDS for OD. After the FS algorithms
yield their scores for each feature, the subset is obtained by different γ, e.g., the top 25%
ranked features, randomly chosen γ features, or automatically proposing γ features by
using ufssod_clustering to avoid the top-γ-problem. Each obtained subset has been used
by six online capable OD algorithms per measurement yielding avg_t and F1 per classifier.
Finally, the results have been averaged across 10 independent runs, since most of the
methods are non-deterministic, e.g., negatively affected by random projection.

Since no other unsupervised FS algorithms for OD with regard to a streaming fashion
exist, we have tested our conceptualization in the two proposed settings of Figures 2 and 3.
Thus, we let UFSSOD compute an outlier score and propose the top-γ-features for each
data instance that will immediately be used and processed sequentially by xStream. For

Appl. Sci. 2021, 11, 12073 18 of 30

LodaTwo Hist. we have used the parallel approach and let Loda build histograms using the
current feature subset while classifying with the old one. The window size was set to
200 samples rather than 256 used by [52] because of the limited number of data instances in
the glass dataset. After the window size is reached, the current classifying histograms are
replaced with the ones built and the new histograms are built using the currently proposed
subset by UFSSOD. The streaming setting was only performed on the datasets with IDs 2,
5, 6, 8, 9, 11, 12, 13, and 14 due to their more meaningful number of data instances for a
streaming setting. Since we stick to the default threshold values for most of the classifiers
and do not extract the score values but their binary prediction, we have not utilized the
scaled combination approach so far. Despite that, we have combined the results of UFSSOD,
xStream, and LodaTwo Hist. by a simple logical or-conjunction in three settings: UFSSOD
with xStream, UFSSOD with LodaTwo Hist. and UFSSOD with xStream with LodaTwo Hist.
as a combination of UFSSOD with two downstream applied OD algorithms. Although
achieving a higher TP while also producing more FP, our approach is legitimate under the
assumption that it is more important to detect attacks while coping with FP in a consecutive
alert analysis. Albeit not within the scope of this work, it must be noted that most of the
classifiers are not able to perform root cause analysis, e.g., Kitsune as stated in [68], which
might be relevant for a subsequent alert analysis.

6. Discussion of Results

In this section we discuss some of the key results obtained by the comprehensive eval-
uation. We have structured this section into three parts. First we discuss the applicability
of FSDS as an FS algorithm for SD when utilized for the purpose of OD by comparing it
with IBFS and UFSSOD. Then, IBFS as an FS algorithm for OD is compared with UFSSOD
in different feature subset settings to discuss the comparable operational capability of
UFSSOD as an FS algorithm for OD. Lastly, we prove the applicability of UFSSOD in
conjunction with the online OD algorithms xStream and LodaTwo Hist. in two different
streaming settings.

6.1. Comparison of FSDS, IBFS and UFSSOD with the Best 25% Features

First, we compare the results for γ set to the 25% of the top-ranked features for FSDS,
IBFS, and UFSSOD. The reason behind only considering the top 25% is that if the FS
algorithm is able to rank the features according to their contribution of anomalousness
properly, the results should, even with this limited amount of features, be noticeable for the
task of OD. If one of the FS algorithms yielded poor results even for the top features, we
could show its non-applicability to the task of OD. The results of the F1/avg_t metric are
shown in Table 4. We have chosen the F1/avg_t metric in this setup since, independently
of IBFS being an offline FS algorithm, we wanted to include the information of the tradeoff
between classification and computational performance, especially to compare FSDS with
UFSSOD, being of online nature. Since we have also compared feature subsets of the same
cardinality, this approach is legitimate. Nevertheless, the results for F1 show a similar
behavior. It is noted that FSDS is able to process more than only one sample at each time t.
The implementation used, required 10 samples at each time to function properly. Thus, the
results, with regard to avg_t, would be even worse for FSDS if it only processed 1 instead
of 10 samples due to a longer runtime.

Appl. Sci. 2021, 11, 12073 19 of 30

Table 4. F1/avg_t results for FSDS (different k), IBFS, and UFSSOD for γ set to 25% of d for datasets
with ID i (values are scaled with ×10−3 and in unit 1/s, best performing feature set in bold).

ID

FS
D

S_
k_

1

FS
D

S_
k_

2

FS
D

S_
k_

3

FS
D

S_
k_

4

FS
D

S_
k_

5

FS
D

S_
k_

6

FS
D

S_
k_

7

FS
D

S_
k_

8

IB
FS

ra
nd

om

U
FS

SO
D

1 10.01 10.35 10.28 9.92 9.97 10.11 9.97 9.99 11.27 8.18 9.89
2 2.41 2.03 2.21 1.55 1.62 1.71 1.77 1.71 2.83 2.24 2.58
3 7.30 7.92 6.40 9.36 7.21 11.00 8.80 9.39 12.20 6.88 3.30
4 17.19 19.52 18.76 18.26 18.17 18.94 18.34 17.61 18.55 18.47 18.99
5 1.36 1.42 1.41 1.40 1.06 1.16 0.88 1.21 1.39 1.15 1.32
6 2.01 2.11 2.07 2.18 1.99 2.02 2.31 2.46 1.77 1.69 1.81
7 6.43 6.95 8.56 8.86 7.12 6.20 5.02 5.10 7.75 6.62 6.49
8 1.39 1.36 1.16 1.41 1.30 1.31 1.41 1.88 0.68 0.54 0.68
9 0.93 0.85 0.68 0.63 0.67 0.49 0.51 0.55 0.63 0.78 0.61

10 7.02 7.06 6.15 7.32 6.11 5.45 6.39 8.81 7.84 7.41 8.91
11 1.58 2.20 2.01 2.01 2.40 2.12 2.17 2.05 3.21 2.00 3.17
12 0.54 0.39 0.51 0.60 0.59 0.62 0.67 0.56 1.26 0.58 0.95
13 1.08 0.70 0.59 1.93 1.65 1.40 1.66 1.24 1.24 0.76 2.82
14 0.60 0.66 0.73 0.80 0.86 1.09 1.00 0.64 1.64 0.97 1.23
15 13.39 12.40 11.17 10.55 11.05 12.97 12.73 10.51 25.75 11.47 24.84

Surprisingly, for some datasets, FSDS performs comparably or even better than IBFS
or UFSSOD. However, for those datasets even randomly choosing 25% of d features
perform mostly comparable as well and the better F1/avg_t is mostly explained by the
better average runtime of FSDS compared to IBFS and UFSSOD, especially for datasets
with a high dimension. For instance, with musk (d = 100), IBFS and UFSSOD have
an approximately 29% higher runtime compared to all FSDS subset results. For better
comprehensibility, two exemplary plots of the F1 for letter and musk are shown in Figure 6
where IBFS and UFSSOD performed poorly and FSDS achieves better results. For letter in
Figure 6a, the overall F1 is quite poor, also showing that randomly choosing 25% of features
achieves results comparable to the other subsets. It is due to the nature of both IBFS and
UFSSOD, being based on an OD algorithm, that if the overall F1 is poor, to not reliably
score the feature contributions with regard to their anomalousness. With an overall decent
F1 achieved by the subsets in musk (Figure 6b), one can clearly see that IBFS and UFSSOD
perform significantly better than the random subset and for most of the FSDS subsets with
different k.

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.09

0.10

0.11

0.12

0.13

0.14

F
1

letter.mat

(a)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.25

0.30

0.35

0.40

0.45

F
1

musk.mat

(b)
Figure 6. Exemplary F1 plots for badly-performing IBFS and UFSSOD using top 25% feature subsets on datasets letter (a)
and musk (b).

Appl. Sci. 2021, 11, 12073 20 of 30

Figure 7 shows the F1 results of datasets where IBFS and UFSSOD performed well
and an overall decent F1 could be achieved. In all subfigures it can be seen that both IBFS
and UFSSOD achieved better results than randomly selecting 25% of features, proving that
even for this fixed small amount of features, IBFS and UFSSOD are able to score features
reliably according to their contribution of anomalousness. Two key outcomes can be noted.
First, in most of the cases FSDS could not achieve better results than randomly selecting
features while IBFS and UFSSOD are able to produce better ones. Second, independent
of the used parameter k, the results significantly vary for each k per dataset without any
pattern apparent, e.g., the smaller the dimension the smaller the k. Even if promising
results can occasionally be obtained for some k, without any pattern behind, one is not able
to properly set the parameter. Those individual cases, e.g., in Figure 7d with FSDS and
k = 1, might be explained by FSDS’ ability to find redundancy among features in a higher
dimension, which scored worse and coincidentally might not contain any outliers. Thus,
their removal will positively affect the F1. However, this way of sorting out irrelevant
features is not the actual intention of FS for the task of OD.

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.18

0.20

0.22

0.24

0.26

0.28

F
1

cardio.mat

(a)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.250

0.275

0.300

0.325

0.350

0.375

F
1

pima.mat

(b)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.225

0.250

0.275

0.300

0.325

0.350

F
1

satellite.mat

(c)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.26

0.28

0.30

0.32

F
1

wbc.mat

(d)
Figure 7. Exemplary F1 plots for well-performing IBFS and UFSSOD using top 25% feature subsets on datasets cardio (a),
pima (b), satellite (c) and wbc (d).

To find an explanation for the worse performance of IBFS and UFSSOD compared
to FSDS in terms of F1/avg_t for some datasets, we have examined two exemplary ones:

Appl. Sci. 2021, 11, 12073 21 of 30

musk (Figure 6b) as a representative for the badly-performing and satellite (Figure 7c)
for the well-performing with decent F1 scores. We then examined the plotted feature
scores of both, which are depicted in Figure 8. It can clearly be seen in Figure 8a and
especially in Figure 8b that the majority of scores lies densely within a certain range and is
homogeneously distributed, which is an indicator that outliers tend to occur in any feature.
Referring to Figure 8c and especially Figure 8d, a more heterogeneous distribution of the
feature scores for the satellite dataset can be seen, reasoning that outliers might tend to
occur in the same features, which generally contribute more to the outlier score.

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225
s̄fi(t)

musk.mat

(a)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4
s̄fi(t)

musk.mat

(b)

0.040 0.045 0.050 0.055 0.060
s̄fi(t)

satellite.mat

(c)

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4
s̄fi(t)

satellite.mat

(d)
Figure 8. Exemplary plots for feature scores s̄ f i(t) of IBFS (a,c) and UFSSOD (b,d) applied on musk (a,b) and satellite (c,d)
(the more intense the color, the higher the score, and the more important the feature).

6.2. Comparison of IBFS and UFSSOD with Different Feature Sets

Since FSDS did not prove to be a promising candidate for OD, we have proceeded our
result discussion by comparing IBFS and UFSSOD. Because of applying different feature
set lengths and an offline with an online algorithm, we now focus on the results of the F1
metric for different subsets, as shown in Table 5, since we do not want to blur results with
shorter average runtimes. For only two datasets, optdigits and satellite, using all features is
more promising whereas, for optdigits, the feature subsets perform much worse. For satellite
the F1 scores across all columns are comparable.

A better picture of the bad performance for optdigits can be made by examining the
feature scores s̄ f i(t), as shown in Figure 9. The red crosses mark those features that are
returned by ufssod_clustering applied on the scores of IBFS and UFSSOD. From a number
of 64 features for full dimension, ufssod_clustering applied on IBFS and UFSSOD only
marks 9 features to be the most important. Since for optdigits it generally applies that the
higher the number of features in the subset the better the score, even the measurements
with 75% of features seems not sufficient enough. Again, this is supporting the assumption
that for optdigits outliers tend to occur in any feature. An overall F1 of only 0.158 by
using all features shows that the online OD algorithms also performed quite poorly on
this dataset.

Even if IBFS and UFSSOD with the ufssod_clustering subset performed approximately
7% faster with regard to avg_t, considering the F1/avg_t metric for all subsets depicted in
Figure 10, it did not significantly influence the results at all.

Appl. Sci. 2021, 11, 12073 22 of 30

Table 5. F1 results for IBFS and UFSSOD for different γ (feature subsets) for datasets with ID i
(full_dim refers to using all features γ = d, *_25,50,75 refers to setting γ to the top scoring 25, 50, and
75% features and *_ckm refers to the top-γ-features obtained by ufssod_clustering, best performing
feature set in bold).

ID

fu
ll

_d
im

ib
fs

_2
5

ib
fs

_5
0

ib
fs

_7
5

ib
fs

_c
km

uf
ss

od
_2

5

uf
ss

od
_5

0

uf
ss

od
_7

5

uf
ss

od
_c

km

1 0.279 0.305 0.290 0.277 0.308 0.274 0.282 0.286 0.266
2 0.295 0.297 0.284 0.293 0.296 0.261 0.298 0.297 0.264
3 0.092 0.158 0.090 0.110 0.090 0.054 0.062 0.138 0.060
4 0.470 0.408 0.458 0.491 0.398 0.409 0.438 0.472 0.459
5 0.129 0.137 0.134 0.141 0.120 0.124 0.113 0.115 0.123
6 0.271 0.266 0.295 0.319 0.312 0.340 0.303 0.344 0.312
7 0.359 0.482 0.435 0.420 0.463 0.404 0.420 0.404 0.411
8 0.158 0.079 0.096 0.138 0.092 0.086 0.083 0.099 0.065
9 0.101 0.072 0.094 0.090 0.060 0.072 0.097 0.097 0.102

10 0.350 0.345 0.245 0.351 0.248 0.390 0.234 0.327 0.348
11 0.364 0.354 0.297 0.306 0.292 0.352 0.300 0.339 0.347
12 0.061 0.067 0.075 0.067 0.064 0.056 0.073 0.064 0.058
13 0.395 0.113 0.303 0.406 0.447 0.260 0.341 0.340 0.397
14 0.093 0.075 0.096 0.109 0.095 0.057 0.098 0.091 0.097
15 0.283 0.321 0.292 0.249 0.305 0.302 0.293 0.273 0.310

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
s̄fi(t)

optdigits.mat

(a)

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4
s̄fi(t)

optdigits.mat

(b)
Figure 9. Exemplary plots for feature scores s̄ f i(t) of IBFS (a) and UFSSOD (b) applied on optdigits (the more intense the
color, the higher the score, and the more important the feature; red crosses mark the top-γ-features by ufssod_clustering).

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

0.8

1.0

1.2

1.4

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

optdigits.mat

(a)

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

100

102

104

106

a
v
g
t

(s
)

optdigits.mat

(b)
Figure 10. F1/avg_t (a) and avg_t (b) results for optdigits referring to Table 5.

Appl. Sci. 2021, 11, 12073 23 of 30

Independently of whether using IBFS or UFSSOD, in the majority of cases using a
subset of features performs better than using the full set. For better comprehensibility, two
exemplary plots for datasets that have achieved decent F1 scores are shown in Figure 11.
In Figure 11a, it can be seen that using all 100 features of the mnist dataset degrades the
classification performance, whereas ufssod_clustering with 37 (IBFS) and 21 (UFSSOD) fea-
tures achieved very good results in terms of F1/avg_t. For UFSSOD, slightly more features
as shown with the 25% measurement would have achieved even better results. Figure 11b
shows the results for the wbc dataset and that it is not always better to choose a high
percentage of top scoring features. From the 30 features in total, using ufssod_clustering
with 10 (IBFS) and 14 (UFSSOD), features achieved much better results than subsets with a
higher number.

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

2.2

2.4

2.6

2.8

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

mnist.mat

(a)

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

14

15

16

17

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

wbc.mat

(b)
Figure 11. F1/avg_t results for well-performing datasets mnist (a) and wbc (b) referring to Table 5.

In order to show the influence of applying ufssod_clustering for IBFS or UFSSOD for
each classifier, we refer to Table 6. As a representative example with the wbc dataset, the
percentage increase or decrease of the metrics avg_t and F1 compared to the measurements
using the full feature dimension is shown. For each classifier, applying ufssod_clustering,
whether on IBFS or UFSSOD, could decrease the runtime by approximately 12% on average
considering the significant improvement on Kitsune. The F1 score could be increased by
approximately 14% on average. HS-Trees and Kitsune show a significant improvement
and a slight improvement could also be noticed for LodaTwo Hist., whereas iMForest and
RS-Hash have shown a classification degradation. For xStream the application of UFSSOD
even yielded an F1 improvement compared to IBFS.

Table 6. Individual classifier performance in terms of the percentage increase/decrease of avg_t and
F1 applying ckeans_ufssod on IBFS and UFSSOD compared to full dimension on wbc dataset.

wbc (d = 30)
γ = 10 (ibfs_ckm) γ = 14 (ufssod_ckm)

% avg_t % F1 % avg_t % F1

RS-Hash −2.33 −1.04 −1.68 −4.24
HS-Trees −1.14 64.97 −1.34 27.25
Kitsune −68.89 56.86 −68.56 66.67
xStream −1.90 −21.15 −1.62 3.23
iMForest −0.08 −16.66 −0.34 −8.25

LodaTwo Hist. −2.52 4.00 −1.33 1.20

Appl. Sci. 2021, 11, 12073 24 of 30

6.3. Application of UFSSOD, xStream, and Loda Two Hist. in a Streaming Setting

Measurement results for the streaming setting with regard to the sequential and
parallel approach (Figures 2 and 3) are shown in Table 7. The F1 score results are averaged
by the results of UFSSOD, xStream, LodaTwo Hist. and their logical or-combination stated in
Section 5.3.

Table 7. F1 results for UFSSOD using different γ (feature subsets) for datasets with ID i in streaming
setting with xStream and LodaTwo Hist. (full_dim refers to using all features γ = d, *_25,50,75 refers to
setting γ to the top scoring 25, 50, and 75% features and *_ckm refers to the top-γ-features obtained
by ufssod_clustering, best performing feature set in bold).

ID full_dim ufssod_25 ufssod_50 ufssod_75 ufssod_ckm

2 0.435 0.404 0.402 0.416 0.390
5 0.083 0.083 0.088 0.076 0.093
6 0.161 0.282 0.229 0.204 0.328
8 0.136 0.097 0.122 0.108 0.113
9 0.154 0.169 0.186 0.159 0.170

11 0.349 0.391 0.389 0.384 0.396
12 0.267 0.247 0.247 0.271 0.254
13 0.425 0.350 0.455 0.456 0.394
14 0.039 0.075 0.077 0.075 0.056

For only two datasets, cardio and optdigits, using all features achieved better classifi-
cation performance than using a subset. However, instead of yielding worse results, the
subsets performed comparably to the full set. Taking into account the average runtime de-
crease using a subset, as shown in Figure 12b, for optdigits, UFSSOD with ufssod_clustering
even achieved a better tradeoff than the other settings. For cardio the F1/avg_t could not
provide better results. The reason why ufssod_clustering has a higher influence on the
result of the F1/avg_t metric on optdigits than on cardio is due to the fact that with only 21
(cardio) and 64 (optdigits) the number of dimensions can be reduced more significantly in
the latter case. Therefore, the average runtime can also be reduced more notably. Since
the avg_t of cardio with its minor number of features can be reduced only marginally with
ufssod_clustering, the dominating factor remains the F1 score.

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

2.25

2.30

2.35

2.40

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

cardio.mat

(a)

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

0.40

0.45

0.50

0.55

0.60

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

optdigits.mat

(b)
Figure 12. F1/avg_t results for badly-performing datasets cardio (a) and optdigits (b) referring to Table 7.

In three dataset measurements, letter, mnist and satellite, ufssod_clustering applied in a
streaming setting to xStream and LodaTwo Hist. yielded the best results. We have neglected
letter since the overall F1 score is poor across all feature sets and therefore the results are

Appl. Sci. 2021, 11, 12073 25 of 30

non-significant. For mnist, ufssod_clustering notably achieved the best F1 compared to
the other feature sets, where even when using all features, it performed the worst. With
mnist’s 100 dimensions, the good result is improved, shown in Figure 13a, considering the
significant reduction of features resulting in a runtime decrease of approximately 40% and
thus a better F1/avg_t metric. Even for satellite having only 36 dimensions, this effect takes
place, shown in Figure 13b, where the avg_t is being decreased by approximately 20%.

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

0.6

0.8

1.0

1.2

1.4

1.6

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

mnist.mat

(a)

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

1.1

1.2

1.3

1.4

1.5

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

satellite.mat

(b)
Figure 13. F1/avg_t results for well-performing datasets mnist (a) and satellite (b) referring to Table 7.

In order to show the influence of applying UFSSOD to xStream and LodaTwo Hist., we
refer to Table 8 showing the percentage increase or decrease of the metrics avg_t and F1
compared to the measurements using the full feature set. For all datasets, xStream achieves
better results with UFSSOD in terms of avg_t with an overall improvement of approxi-
mately 11% compared to the measurements using all features. However, with an average
runtime per dataset (full dimension) of approximately 590 sec yielding 0.27 s/sample across
all datasets, xStream’s Python implementation of StreamAD does not seem very efficient
compared to our LodaTwo Hist. implementation, with approximately 3 s average runtime
per dataset and 1.4 ms/sample. Compared to the other classifiers in the measurements,
xStream was the only one with this significant runtime, also explaining why the authors of
xStream provided a C++ streaming version rather than a Python pendant to their static one.
Considering the fast runtime of LodaTwo Hist., significant improvements of avg_t could only
be achieved for datasets whose number of data instances and dimension ratio is higher
(ID 6, 8, and 11) than those of the others and, on average, reduces avg_t by 7%. As an
example, for optdigits with 2216 data instances and 64 dimensions, UFSSOD could reduce
avg_t by approximately 22%. As for the percentage improvement of F1, excluding the
statistical strays of dataset 6 and 15 for xStream, an improvement of approximately 22% on
average could be obtained. For LodaTwo Hist., the improvement is even more notable with
approximately 45% (ID 6 and 15 excluded).

Appl. Sci. 2021, 11, 12073 26 of 30

Table 8. Performance of xStream and LodaTwo Hist. in terms of the percentage increase/decrease of
avg_t and F1 applying UFSSOD in a streaming setting compared to full dimension (N/A for ID 15
since no F1 score could be obtained with full dimension due to poor classification results).

ID
xStream LodaTwo Hist.

% avg_t % F1 % avg_t % F1

2 −2.74 −30.72 0.49 −6.41
5 −2.29 60.29 3.18 −14.37
6 −42.9 2638.80 −36.38 232.54
8 −28.4 −47.85 −22.22 305.52
9 −1.34 1.50 1.39 41.81
11 −18.75 34.63 −15.21 3.46
12 −3.19 111.16 1.82 −1.34
13 −1.70 22.61 1.68 −16.07
15 −1.15 N/A 0.29 16.00

It should be noted that xStream worked in the truly online mode. Therefore similar
performance boosts, as with LodaTwo Hist., might also be achieved for xStream if using the
proposed windowed approach mentioned in Section 4. In summary, applying UFSSOD in a
streaming setting notably increases both the classification and computational performance
if the dataset is of high-dimensional nature and has a high number of data instances. In
a real-world application, the former depends on the applied domain but fits perfectly
with current observable trends. The latter is only part of this evaluation setup since in the
real-world the data stream has an infinite amount of samples. Although xStream and Loda
are representatives that work better on high-dimensional data [14] and one might assume
that a reduction of features by UFSSOD might degrade their performance, the experiments
show that the opposite is true, with an overall improved result. Thus, we assume that using
UFSSOD with other online classifiers, such as ones based on iForest that handle changing
feature sets during runtime, may boost the performance even more.

7. Conclusions and Future Work

In this work we have illuminated the necessity of unsupervised Feature Selection (FS)
for Outlier Detection (OD) in Streaming Data (SD) for domains, e.g., intrusion detection, in
network security, which are ever-increasingly facing high-volume and high-dimensional
data that need to be processed in almost real-time. With the extensive review on FS
approaches for either (i) SD or (ii) OD, we have pointed out that, to the best of our
knowledge, the proposed Unsupervised Feature Selection for Streaming Outlier Detection,
called UFSSOD, is the first method of its kind to fill the research gap by providing a
solution bridging (i) and (ii). Two application scenarios of UFSSOD, together with online
capable OD methods, are discussed along with UFSSOD’s operation and functionality. This
also includes the ability to provide the amount of top-performing features by clustering
their score values, which is often circumvented in the literature by setting a pre-defined
number. Extensive measurements were conducted on 15 real-world datasets by applying
multiple feature subsets to six widely accepted off-the-shelf online OD methods obtained
from UFSSOD and state-of-the-art competitors FSDS as a representative of (i) and IBFS of
(ii). The evaluation examines the alleviation of the negative effect brought by irrelevant
features for the outlier detectors, considering both, the classification and computational
performance. The discussion of the results pointed out the non-applicability of FSDS
for OD because it does not achieve reliable and satisfactory results, independent of its
cluster parameter k. In comparison to (offline) IBFS, UFSSOD achieves at least comparable
results while operating in an online fashion. It was able to decrease the average runtime
of individual classifiers by approximately 12% and improve the F1 by 14% on average.
UFSSOD is also evaluated in a true online setting by providing a feature subset inline to
xStream for each sample and to LodaTwo Hist. using a windowed approach. In this setting,
applying UFSSOD yields better results than the bare versions of the OD methods operating

Appl. Sci. 2021, 11, 12073 27 of 30

on full dimension. For instance, UFSSOD could improve the F1 up to 45% for LodaTwo Hist.
while reducing the average runtime by 22% for individual data sets.

As assumed, UFSSOD works better if the outliers in the dataset tend to occur in
the same features, which is mostly the case, as stated, in the network security domain.
Even passing the stress test on datasets that does not meet this presumption, as part of
future work, UFSSOD will be thoroughly examined on more domain-specific datasets.
Especially, the CSE-CIC-IDS2018 dataset allows to evaluate different types of features (e.g.,
flow or packet based) and their influence on the performance of UFSSOD. Instead of using
existing datasets, we will apply UFSSOD in a real world computer network (no labeled
data available) in parallel to classifiers without feature selection to examine the differences
in classification results. A recently proposed method [69] might be applied to exploit and
evaluate the outcome of outlier detection for novel attack pattern recognition on streaming
data with and without the application of UFSSOD’s feature selection.

Since in the current configuration, measurements only relied on the γmin functionality
with respect to Algorithm 3, a part of our future work will be comparing it with the distance
functionality, which tends to result in more features, leading to higher computational costs,
but might improve the classification task even further. Additionally, a more thorough test-
ing of the outlier scaling and its combination across multiple online detection approaches
will be performed. In terms of UFSSOD’s operation modes, the discussion of results re-
vealed inferior performance of xStream applied in the true online setting compared to
LodaTwo Hist.’s windowed setting. Within the scope of our future work is also to apply
xStream in the windowed setting and check which mode—sequential or parallel—is in
general more effective and why. Since UFSSOD’s main purpose is the streaming feature
selection for outlier detection, further evaluation should also include the latest online
outlier detection methods, e.g., PCB-iForest [70].

Inspired by approaches used in CINFO or ODEFS and the nature of UFSSOD to
provide outlier candidates, in future work we will examine the possibility of applying
supervised FS, similarly to sparse Lasso regression in CINFO, based on pseudo-labels
obtained from UFSSOD’s outlier candidates. Thus, not only the pure nature of Loda’s
functioning will form the basis for FS but it may also be improved by shrinking the solution,
resulting in a number of features that are not correlated to the outlier score. To even further
alleviate the circumstance that FS is performed independently of the subsequent online
OD method, possibly yielding a suboptimal and biased solution for OD, we might include
outlier candidates from the Unsupervised Online OD module as well. Instead of performing
iterative validations to reduce the loss in an offline setting having all data objects available,
we will research possibilities to do so in a slimmed-down online fashion by exploiting the
strength of theoretically infinite running time of SD.

Author Contributions: Conceptualization, M.H.; methodology, M.H. and E.W.; software, M.H. and
E.W.; validation, M.H. and D.F.; writing—original draft, M.H.; visualization, M.H. and E.W.; writing—
review and editing, M.H., E.W., D.F. and M.S.; supervision, D.F. and M.S.; funding acquisition, D.F.
and M.S.; project administration, M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research work is partially supported by the research project 13FH645IB6 of the German
Federal Ministry of Education and Research as well as by the Ministry of Education, Youth, and
Sports of the Czech Republic under grant No. LO1506.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ‘ODDS’ datasets utilized for the evaluation in this article are
available from the site http://odds.cs.stonybrook.edu/about-odds/ (accessed on 5 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

http://odds.cs.stonybrook.edu/about-odds/

Appl. Sci. 2021, 11, 12073 28 of 30

References
1. Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.K.; Tachtatzis, C.; Atkinson, R.; Bellekens, X. A taxonomy of network threats and the

effect of current datasets on intrusion detection systems. IEEE Access 2020, 8, 104650–104675. [CrossRef]
2. Sarker, I.H.; Kayes, A.S.M.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity data science: An overview from machine

learning perspective. J. Big Data 2020, 7, 41. [CrossRef]
3. Mahfouz, A.; Abuhussein, A.; Venugopal, D.; Shiva, S. Ensemble classifiers for network intrusion detection using a novel network

attack dataset. Future Internet 2020, 12, 180. [CrossRef]
4. Pang, G.; Cao, L.; Chen, L.; Liu, H. Unsupervised feature selection for outlier detection by modelling hierarchical value-feature

couplings. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15
December 2016; pp. 410–419. [CrossRef]

5. Thakkar, P.; Vala, J.; Prajapati, V. Survey on outlier detection in data stream. Int. J. Comput. Appl. 2016, 136, 13–16. [CrossRef]
6. Moradi, P.; Gholampour, M. A hybrid particle swarm optimization for feature subset selection by integrating a novel local search

strategy. Appl. Soft Comput. 2016, 43, 117–130. [CrossRef]
7. Nguyen, H.T.; Petrović, S.; Franke, K. A comparison of feature-selection methods for intrusion detection. In Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 242–255. [CrossRef]
8. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.

2018, 50, 1–45. [CrossRef]
9. Zöller, M.-A.; Huber, M.F. Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 2021, 70,

409–472. [CrossRef]
10. Krawczyk, B.; Cano, A. Online ensemble learning with abstaining classifiers for drifting and noisy data streams. Appl. Soft

Comput. 2018, 68, 677–692. [CrossRef]
11. Togbe, M.U.; Barry, M.; Boly, A.; Chabchoub, Y.; Chiky, R.; Montiel, J.; Tran, V.-T. Anomaly detection for data streams based on

isolation forest using scikit-multiflow. In Computational Science and Its Applications—ICCSA; Lecture Notes in Computer Science;
Gervasi, O., Ed.; Springer, Cham, 2020; Volume 12252, pp. 15–30. [CrossRef]

12. Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised real-time anomaly detection for streaming data. Neurocomputing 2017,
262, 134–147. [CrossRef]

13. Reunanen, N.; Räty, T.; Jokinen, J.J.; Hoyt, T. Unsupervised online detection and prediction of outliers in streams of sensor data.
Int. J. Data Sci. Anal. 2020, 9, 285–314. [CrossRef]

14. Manzoor, E.; Lamba, H.; Akoglu, L. xStream: Outlier detection in feature-evolving data streams. In Proceedings of the Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
ACM: New York, NY, USA, 2018. [CrossRef]

15. Iglesias, F.; Zseby, T. Analysis of network traffic features for anomaly detection. Mach. Learn. 2015, 101, 59–84. [CrossRef]
16. Zheng, A. Feature Engineering for Machine Learning; O’Reilly Media: Sebastopol, CA, USA, 2018; ISBN 9781491953242.
17. Rahmaninia, M.; Moradi, P. OSFSMI: Online stream feature selection method based on mutual information. Appl. Soft Comput.

2018, 68, 733–746. [CrossRef]
18. Almusallam, N.; Tari, Z.; Chan, J.; AlHarthi, A. UFSSF—An efficient unsupervised feature selection for streaming features. In

Advances in Knowledge Discovery and Data Mining; Springer International Publishing: Cham, Switzerland, 2018; pp. 495–507.
[CrossRef]

19. Chapman S.; Richard, Y.D.X. Diverse Online Feature Selection. arXiv 2019, arXiv:1806.04308v3.
20. Panday, D.; Cordeiro de Amorim, R.; Lane, P. Feature weighting as a tool for unsupervised feature selection. Inf. Process. Lett.

2018, 129, 44–52. [CrossRef]
21. Fahy, C.; Yang, S. Dynamic feature selection for clustering high dimensional data streams. IEEE Access 2019, 7, 127128–127140.

[CrossRef]
22. Ma, R.; Wang, Y.; Cheng, L. Feature selection on data stream via multi-cluster structure preservation. In Proceedings of the

29th ACM International Conference on Information & Knowledge Management, online, 19–23 October 2020; Association for
Computing Machinery: New York, NY, USA, 2020; pp. 1065–1074. [CrossRef]

23. Wang, J.; Zhao, P.; Hoi, S.C.H.; Jin, R. Online feature selection and its applications. IEEE Trans. Knowl. Data Eng. 2014, 26, 698–710.
[CrossRef]

24. Hammoodi, M.S.; Stahl, F.; Badii, A. Real-time feature selection technique with concept drift detection using adaptive micro-
clusters for data stream mining. IEEE Knowl. Syst. 2018, 161, 205–239. [CrossRef]

25. Barddal, J.P.; Murilo Gomes, H.; Enembreck, F.; Pfahringer, B.; Bifet, A. On Dynamic Feature Weighting for Feature Drifting Data
Streams; Springer International Publishing: Cham, Switzerland, 2016; pp. 129–144. [CrossRef]

26. Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. A review of unsupervised feature selection methods. Artif.
Intell. Rev. 2020, 53, 907–948. [CrossRef]

27. Shao, W.; He, L.; Lu, C.-T.; Wei, X.; Yu, P.S. Online Unsupervised Multi-view Feature Selection. In Proceedings of the 2016 IEEE
16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016. [CrossRef]

28. Huang, H.; Yoo, S.; Kasiviswanathan, S.P. Unsupervised feature selection on data streams. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015; Association
for Computing Machinery: New York, NY, USA,2015; pp. 1031–1040. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.3000179
http://dx.doi.org/10.1186/s40537-020-00318-5
http://dx.doi.org/10.3390/fi12110180
http://dx.doi.org/10.1109/ICDM.2016.0052
http://dx.doi.org/10.5120/ijca2016908257
http://dx.doi.org/10.1016/j.asoc.2016.01.044
http://dx.doi.org/10.1007/978-3-642-14706-7_19
http://dx.doi.org/10.1145/3136625
http://dx.doi.org/10.1613/jair.1.11854
http://dx.doi.org/10.1016/j.asoc.2017.12.008
http://dx.doi.org/10.1007/978-3-030-58811-3_2
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1007/s41060-019-00191-3
http://dx.doi.org/10.1145/3219819.3220107
http://dx.doi.org/10.1007/s10994-014-5473-9
http://dx.doi.org/10.1016/j.asoc.2017.08.034
http://dx.doi.org/10.1007/978-3-319-93037-4_39
http://dx.doi.org/10.1016/j.ipl.2017.09.005
http://dx.doi.org/10.1109/ACCESS.2019.2932308
http://dx.doi.org/10.1145/3340531.3411928
http://dx.doi.org/10.1109/TKDE.2013.32
http://dx.doi.org/10.1016/j.knosys.2018.08.007
http://dx.doi.org/10.1007/978-3-319-46227-1_9
http://dx.doi.org/10.1007/s10462-019-09682-y
http://dx.doi.org/10.1109/icdm.2016.0160
http://dx.doi.org/10.1145/2806416.2806521

Appl. Sci. 2021, 11, 12073 29 of 30

29. Liberty, E. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; Association for Computing Machinery: New
York, NY, USA, 2013; pp. 581–588. [CrossRef]

30. Alamiedy, T.A.; Anbar, M.; Al-Ani, A.K.; Al-Tamimi, B.N.; Faleh, N. Review on feature selection algorithms for anomaly-based
intrusion detection system. In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland,
2019; pp. 605–619. [CrossRef]

31. Park, J.S.; Shazzad, K.M.; Kim, D.S. Toward modeling lightweight intrusion detection system through correlation-based hybrid
feature selection. In Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 279–289. [CrossRef]

32. Al-Jarrah, O.Y.; Siddiqui, A.; Elsalamouny, M.; Yoo, P.D.; Muhaidat, S.; Kim, K. Machine-learning-based feature selection
techniques for large-scale network intrusion detection. In Proceedings of the 2014 IEEE 34th International Conference on
Distributed Computing Systems Workshop, Madrid, Spain, 30 June–3 July 2014. [CrossRef]

33. Chen, S.; Huang, Z.; Zuo, Z.; Guo, X. A feature selection method for anomaly detection based on improved genetic algorithm. In
Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering, Wuhan, China,
15–16 October 2016; Atlantis Press: Paris, France, 2016. [CrossRef]

34. Gottwalt, F.; Chang, E.; Dillon, T. CorrCorr: A feature selection method for multivariate correlation network anomaly detection
techniques. Comput. Secur. 2019, 83, 234–245. [CrossRef]

35. Ren, J.; Guo, J.; Qian, W.; Yuan, H.; Hao, X.; Jingjing, H. Building an effective intrusion detection system by using hybrid data
optimization based on machine learning algorithms. Secur. Commun. Netw. 2019, 2019, 1–11. [CrossRef]

36. Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M. IoT malicious traffic identification using wrapper-based feature selection
mechanisms. Comput. Secur. 2020, 94, 101863. [CrossRef]

37. Zhou, Y.; Cheng, G.; Jiang, S.; Dai, M. Building an efficient intrusion detection system based on feature selection and ensemble
classifier. Comput. Netw. 2020, 174, 107247. [CrossRef]

38. Nazir, A.; Khan, R.A. A novel combinatorial optimization based feature selection method for network intrusion detection. Comput.
Secur. 2021, 102, 102164. [CrossRef]

39. Naidoo, T.; Tapamo, J. R.; McDonald, A. Feature selection for anomaly–based network intrusion detection using cluster validity
indices. In SATNAC: Africa—The Future Communications Galaxy; Arabella Hotel & Spa: Western Cape, South Africa, 2015.

40. Zhang, H.; Nian, K.; Coleman, T.F.; Li, Y. Spectral ranking and unsupervised feature selection for point, collective, and contextual
anomaly detection. Int. J. Data Sci. Anal. 2020, 9, 57–75. [CrossRef]

41. Suri, N.N.R.R.; Murty, M.N.; Athithan, G. Unsupervised feature selection for outlier detection in categorical data using mutual
information. In Proceedings of the 2012 12th International Conference on Hybrid Intelligent Systems (HIS), Pune, India, 4–7
December 2012. [CrossRef]

42. Pang, G.; Cao, L.; Chen, L. Outlier Detection in Complex Categorical Data by Modelling the Feature Value Couplings. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016;
Volume 7, pp. 1902–1908. [CrossRef]

43. Pang, G.; Cao, L.; Chen, L.; Lian, D.; Liu, H. Sparse Modeling-Based Sequential Ensemble Learning for Effective Outlier Detection
in High-Dimensional Numeric Data. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018; Volume 32.

44. Prasad, M.; Tripathi, S.; Dahal, K. Unsupervised feature selection and cluster center initialization based arbitrary shaped clusters
for intrusion detection. Comput. Secur. 2020, 99, 102062. [CrossRef]

45. Cheng, L.; Wang, Y.; Liu, X.; Li, B. Outlier detection ensemble with embedded feature selection. Proc. Conf. AAAI Artif. Intell.
2020, 34, 3503–3512. [CrossRef]

46. Yang, Q.; Singh, J.; Lee, J. Isolation-based feature Selection for Unsupervised Outlier Detection. Proc. Annu. Conf. Progn. Health
Manag. Soc. 2019, 11. [CrossRef]

47. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [CrossRef]

48. Ma, H.; Ghojogh, B.; Samad, M.N.; Zheng, D.; Crowley, M. Isolation Mondrian forest for batch and online anomaly detection. In
Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14
October 2020; pp. 3051–3058. [CrossRef]

49. Sun, H.; He, Q.; Liao, K.; Sellis, T.; Guo, L.; Zhang, X.; Shen, J.; Chen, F. Fast anomaly detection in multiple multi-dimensional
data streams. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12
December 2019; pp. 1218–1223. [CrossRef]

50. Togbe, M.U.; Chabchoub, Y.; Boly, A.; Barry, M.; Chiky, R.; Bahri, M. Anomalies detection using isolation in concept-drifting data
streams. Computers 2021, 10, 13. [CrossRef]

51. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, Madeira,
Portugal, 22–24 January 2018; pp. 108–116. [CrossRef]

52. Pevný, T. Loda: Lightweight on-line detector of anomalies. Mach. Learn. 2016, 102, 275–304. [CrossRef]
53. Ding, Z.; Fei, M. An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window.

IFAC Proc. 2013, 46, 12–17. [CrossRef]

http://dx.doi.org/10.1145/2487575.2487623
http://dx.doi.org/10.1007/978-3-319-99007-1_57
http://dx.doi.org/10.1007/11599548_24
http://dx.doi.org/10.1109/icdcsw.2014.14
http://dx.doi.org/10.2991/mmme-16.2016.41
http://dx.doi.org/10.1016/j.cose.2019.02.008
http://dx.doi.org/10.1155/2019/7130868
http://dx.doi.org/10.1016/j.cose.2020.101863
http://dx.doi.org/10.1016/j.comnet.2020.107247
http://dx.doi.org/10.1016/j.cose.2020.102164
http://dx.doi.org/10.1007/s41060-018-0161-7
http://dx.doi.org/10.1109/his.2012.6421343
http://dx.doi.org/10.5555/3060832.3060887
http://dx.doi.org/10.1016/j.cose.2020.102062
http://dx.doi.org/10.1609/aaai.v34i04.5755
http://dx.doi.org/10.36001/phmconf.2019.v11i1.824
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1109/SMC42975.2020.9283073
http://dx.doi.org/10.1109/BigData47090.2019.9006354
http://dx.doi.org/10.3390/computers10010013
http://dx.doi.org/10.5220/0006639801080116
http://dx.doi.org/10.1007/s10994-015-5521-0
http://dx.doi.org/10.3182/20130902-3-CN-3020.00044

Appl. Sci. 2021, 11, 12073 30 of 30

54. Kriegel, H.-P.; Kroger, P.; Schubert, E.; Zimek, A. Interpreting and Unifying Outlier Scores. In Proceedings of the 2011 SIAM
International Conference on Data Mining, Mesa, AZ, USA, 28–30 April 2011; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 2011. [CrossRef]

55. Welford, B.P. Note on a method for calculating corrected sums of squares and products. Technometrics 1962, 4, 419–420. [CrossRef]
56. Saarinen, I. Adaptive Real-Time Anomaly Detection for Multi-Dimensional Streaming Data. Master’s Thesis, Aalto University,

Espoo, Finland, 2017.
57. Wang, H.; Song, M. Ckmeans. 1d. dp: Optimal k-means clustering in one dimension by dynamic programming. R J. 2011, 3,

29–33. [CrossRef] [PubMed]
58. Song, M.; Zhong, H. Efficient weighted univariate clustering maps outstanding dysregulated genomic zones in human cancers.

Bioinformatics 2020, 36, 5027–5036. [CrossRef]
59. Aggarwal, C.C.; Sathe, S. Theoretical foundations and algorithms for outlier ensembles. SIGKDD Explor. 2015, 17, 24–47.

[CrossRef]
60. Yilmaz, S.F.; Kozat, S.S. PySAD: A streaming anomaly detection framework in python. arXiv 2020, arXiv:2009.02572.
61. Sathe, S.; Aggarwal, C.C. Subspace outlier detection in linear time with randomized hashing. In Proceedings of the 2016 IEEE

16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 459–468. [CrossRef]
62. Tan, S.C.; Ting, K.M.; Liu, T.F. Fast anomaly detection for streaming data. In Proceedings of the Proceedings of the Twenty-Second

international joint conference on Artificial Intelligence—Volume Two, Barcelona, Spain, 16–22 July 2011; pp. 1511–1516. [CrossRef]
63. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An ensemble of autoencoders for online network intrusion detection.

In Proceedings of the Network and Distributed System Security Symposium 2018 (NDSS’18), San Diego, CA, USA, 18–21
February 2018.

64. Zhao, Y.; Nasrullah, Z.; Li, Z. PyOD: A Python Toolbox for Scalable Outlier Detection. arXiv 2019, arXiv:1901.01588.
65. Rayana, S. ODDS Library. Stony Brook University, Department of Computer Sciences. 2016. Available online: http://odds.cs.

stonybrook.edu (accessed on 5 March 2021).
66. Zhou, Q.; Pezaros, D. Evaluation of machine learning classifiers for Zero-Day intrusion detection—An analysis on CIC-AWS-2018

dataset. arXiv 2021, arXiv:1905.03685.
67. Kenyon, A.; Deka, L.; Elizondo, D. Are public intrusion datasets fit for purpose characterising the state of the art in intrusion

event datasets. Comput. Secur. 2020, 99, 102022. [CrossRef]
68. Kumar, A.; Shridhar, M.; Swaminathan, S.; Lim, T.J. Machine Learning-based early detection of IoT botnets using network-edge

traffic. arXiv 2020, arXiv:2010.11453.
69. Heigl, M.; Weigelt, E.; Urmann, A.; Fiala, D.; Schramm, M. Exploiting the outcome of Outlier Detection for novel Attack Pattern

Recognition on Streaming Data. Electronics 2021, 10, 2160. [CrossRef]
70. Heigl, M.; Anand, K.A.; Urmann, A.; Fiala, D.; Schramm, M.; Hable, R. On the improvement of the isolation forest algorithm for

outlier detection with streaming data. Electronics 2021, 10, 1534. [CrossRef]

http://dx.doi.org/10.1137/1.9781611972818.2
http://dx.doi.org/10.1080/00401706.1962.10490022
http://dx.doi.org/10.32614/RJ-2011-015
http://www.ncbi.nlm.nih.gov/pubmed/27942416
http://dx.doi.org/10.1093/bioinformatics/btaa613
http://dx.doi.org/10.1145/2830544.2830549
http://dx.doi.org/10.1109/ICDM.2016.0057
http://dx.doi.org/10.5555/2283516.2283647
http://odds.cs.stonybrook.edu
http://odds.cs.stonybrook.edu
http://dx.doi.org/10.1016/j.cose.2020.102022
http://dx.doi.org/10.3390/electronics10172160
http://dx.doi.org/10.3390/electronics10131534

	Introduction
	Background
	Outlier Detection
	Feature Selection

	Requirements Engineering and Comparison with Related Work
	Requirements with Respect to Feature Selection for Outlier Detection on Streaming Data
	Feature Selection for Streaming Data
	Feature Selection for Outlier Detection

	Unsupervised Feature Selection for Streaming Outlier Detection
	Operation Principle
	Operation Modes
	Model for Scoring and Clustering Features

	Evaluation
	Test Environment
	Data Source
	Evaluation Methodology

	Discussion of Results
	Comparison of FSDS, IBFS and UFSSOD with the Best 25% Features
	Comparison of IBFS and UFSSOD with Different Feature Sets
	Application of UFSSOD, xStream, and Loda Two Hist. in a Streaming Setting

	Conclusions and Future Work
	References

