

RETRIEVING CITATIONS ON THE WEB

Dalibor Fiala Karel Jezek
Dept. of Computer Science and Engineering

University of West Bohemia
Univerzitni 22, 306 14 Plzen, Czech Republic

{dalfia, jezek_ka}@kiv.zcu.cz

Abstract – A fundamental feature of research papers is

how many times they are cited in other articles, i.e. how
many later references to them there are. That is the only
objective way of evaluation how important or novel a pa-
per's ideas are. With an increasing number of articles
available online, it has become possible to find these cita-
tions in a more or less automated way. This paper first
describes existing possibilities of citations retrieval and
indexing and then introduces CiteSeeker – a tool for a fully
automated citations retrieval. CiteSeeker starts crawling
the World Wide Web from given start points and searches
for specified authors and publications in a fuzzy manner.
That means that certain inaccuracies in the inputs are
taken into account. CiteSeeker treats all common Internet
file formats, including PostScript and PDF documents and
archives. The project is based on the .NET technology.

Keywords: Citations, Retrieval, Web, Fuzzy Search,
.NET, C#

I. INTRODUCTION

Research papers and reports often cite other articles
and, in turn, they are cited elsewhere. The number of
citations (or references to a particular paper) is the only
objective way of evaluation how important or novel the
paper's ideas are. In other words, the number of citations
expresses the paper quality. It may also, under certain
circumstances, express the quality of a scientist or re-
searcher.

With an increasing number of papers and articles
(publications) available online on the Web it has be-
come possible to retrieve citations in a more or less
automated way. The task is to develop a sophisticated
system that would enable searching the Internet for
references to specific research reports and papers or to
their authors. All common Internet file formats such as
HTML, XML, PDF, PS should be considered including
compressed files (ZIP, GZ) as these are frequently used
with papers.

Also certain inaccuracies in the inputs have to be
taken into account. Errors may occur on either side – in
the query as well as in the data to be searched. Thus,
some approximate (or fuzzy) comparison must be em-
ployed. Unlike other citations retrieval systems, which
are based on formulating SQL queries on a vast database
of publications or parts of them, our way consists in a
systematic Internet searching. From given start points
the search expands to all directions determined by the
links in the documents being searched. The resulting

application is called CiteSeeker. The start points for
Web crawling are specified by the user or they can be
obtained from a conventional search engine. The pro-
gram uses existing tools for extracting text from non-
textual files and returns results as a list of URLs where
the references were found.

With regard to decision support the system is appli-
cable to personnel policy – acceptance of employees,
search for experts in a particular domain. Especially for
universities or research institutions it is often useful to
know whether a candidate is respected in the research
community, how much he/she is cited and by whom.

In the rest of the paper we introduce common Web
documents in Section II and briefly describe a few
search engines in Section III. Section IV is devoted to
the problem of a fuzzy search (search with errors) and
Section V presents CiteSeeker design issues. The reader
becomes familiar with some implementation details in
Section VI. Section VII deals with inputs and outputs of
the system, some experimental results are shown in
Section VIII and, finally, we come to conclusions in
Section IX and suggest a couple of possible improve-
ments.

II. WEB DOCUMENTS

The actual navigable Web pages that enable browsing
the World Wide Web forward and backward via the
system of links are HTML files and their derivatives. In
addition to static HTML files, which remain the same
when transferred from servers to clients, dynamic pages
(PHP, ASP, etc.) generate their content when accessed
either on the server side or on the client side. Especially
the latter may cause severe problems when processing
their source. Rich text format (RTF) files are text files
amended by text formatting information. On a similar
basis Microsoft Word (DOC) and PowerPoint (PPT)
files are made up with that difference that the formatting
properties are binary. Although there are tools for ex-
tracting text from these files [23] or those tools might
simply be created, the irrelevant information can easily
be ignored in either case.

The vast majority of online research papers are in
Portable Document Format (PDF) [7] or in PostScript
(PS) [25]. Files on the Web are often compressed to
reduce their size and thus to make their accessibility
easier. It is essential for a search engine to be able to
unpack compressed files so as to access the information
in them. The frequent archive types are Zip, Gzip and

Tar. The corresponding unpacking utilities are pkunzip
[26], UnZip [27], gzip [28] and tar [29]. The first pro-
gram is shareware, the last three are open source.

The actual text in PS and PDF files that would be
printed is, in general, not readable from the source.
Therefore, external tools that allow extracting text from
them must be used. There are a few free utilities which
enable extracting plain text from PS and PDF files via
command line – Pstotext [24], PreScript [9, 4] and
Pdftotext [14]. All of them require the support of Ghost-
script, an open source PostScript interpreter [8]. The
reliability of freely available software is by far not
100 % as will be shown in Section VIII.

III. SEARCH ENGINES

The number of Internet hosts, i.e. machines con-
nected to the Internet directly or via dial-up, was about
180 million in January 2003 [17]. Of course, not all of
the Internet hosts provide Web services. The total num-
ber of Web servers estimated by Netcraft was 40 million
approx. in April 2003 [31]. In February 1999, Lawrence
and Giles estimated the number of publicly accessible
Web servers to be 2.8 million and the number of Web
pages about 800 million [1]. According to their research
none of the search engines examined by them covered
more than 16 % of the Web. With the information above
we can make an estimate of the current Web size. Pro-
vided the relation between Web servers and pages is the
same as in [1] there would be about 11.4 billion Web
pages at present (800 / 2.8 = 11 400 / 40). If we assume
that Google’s 3 billion Web pages (see Section III.A)
cover 16 % of the Web, there would be 18.75 billion
documents on the Web. Thus, we can guess that there
are 10 – 20 billion Web documents (1010 – 2 x 1010) at
present.

A. General Search Engines
Some information about search engines may be found

in [10], [11], [16]. Due to Google’s superiority to other
search engines in almost all features we are going to
take a look at it as a representative of this category.
There are well over 3 billion (3 x 109) documents in the
main Google database now. [18] claims that, as of De-
cember 2001, some 73 % of them were indexed Web
pages and 1.75 % were not HTML-like Web pages. PDF
and PS files were by far the most numerous - about
90 % (March 2002). Except daily reindexed pages, the
most are refreshed every 4 – 8 weeks [19, 20, 21]. Cite-
Seeker makes use of free Google Web APIs services
[15] for automatized querying.

B. Specialized Search Engines
The most representative search engines in context of

citations retrieval are ISI Web of Science [22] and Re-
searchIndex (formerly CiteSeer) [12]. ISI Web of Sci-
ence is a commercial product. Its database consists pri-
marily of papers from about 8 500 research journals and
some Web sites. Services as well as the full source code
of ResearchIndex are freely available. Furthermore,
unlike ISI Web of Science, the citation index is con-

structed in a fully automated way – no manual effort is
needed. Some internals of ResearchIndex may be found
in [2].

IV. FUZZY SEARCHING

The problem of fuzzy search, which can be reduced
into the problem of approximate string match, is essen-
tial for finding strings in a text that differ to some extent
from those in input. For instance, a possible difference
between the names of one publication stated in two
various places may consist in the order of letters, in
missing, redundant or completely distinct letters (slips),
or in missing or redundant word separators (usually
spaces).

All of the strings should be in lower case so that the
comparison is case insensitive. Also all word separators
are supposed to have been converted into a single space
beforehand. Apparently, this approach enables compar-
ing strings with diacritics as well and it is often useful
when one of the strings includes diacritics while the
other one does not.

The method of comparing two strings used in Cite-
Seeker is discussed in [3] and [5] and the algorithm is,
among others, applied in GNU diff 2.7 as stated in [30].
The first step in determination of two strings‘ similarity
is finding the shortest edit script (SES). We use a modi-
fication of the basic greedy algorithm which requires
O((M + N) D) time, where M and N are strings’ lengths
and D is the length of SES. See [3] for details. The dis-
similarity of two strings can be calculated rather intui-
tively as SES length divided by the total length of both
strings. In general, the similarity of strings A and B can
be computed by this formula:

sim(A, B) = 1 - D / (M + N) (1)
where M is length of A, N is length of B and D is their
SES length.

Obviously, sim(A, B) = 1 when A and B are the same
and sim(A, B) = 0 when A and B are completely differ-
ent.

Sim(A, B) is the output of fstrcmp() function, which
was acquired at [30]. In addition to A and B, this func-
tion has a third parameter – limit. If sim(A, B) acquired
during computation drops below limit, execution is
stopped. This avoids analyzing strings that can no longer
be as similar as requested.

We provide a wrapper for this function – fstrcmp.exe.
It has three inputs: limit, A, text. The first two parame-
ters (limit, A) are evident. The text parameter is a string
which will be searched for A. It will not be compared to
A as a whole. Instead, strings of the same length as A
are extracted from text starting at position 0 in text with
shifts by one character. Of course, towards the end of
text the extracted string will be shorter than A. Each
such string is passed as parameter B into fstrcmp(A, B,
limit). Provided the length of text is T (fstrcmp() is
invoked T times then), the resulting time cost of a fuzzy
search for A in text is

O(N D T) (2)

where N is the search string length (it is 2 * length(A),
in fact), T is the text length (which will be searched) and
D is the SES length for A and B extracted from text
before each invocation of fstrcmp(A, B, limit). Appar-
ently, D may vary on each invocation of fstrcmp() but
the relations remain the same.

An alternative to fstrcmp() is Agrep [13], a utility
which also provides a kind of fuzzy (approximate)
search based on a non-deterministic finite state machine.
Unfortunately, it has some severe limitations: The
search string must not be more than 32 bytes long, and
the number of errors in it must not exceed 8.

V. CITESEEKER – DESIGN

A. Problems with Web Crawling
The core of CiteSeeker is a Web crawler, thus the

first obvious problems are related to the Web structure.
Each Web server is a directed graph of documents.
Links among documents may introduce loops within a
server as well as among distinct servers when directed
accordingly. The optimal case for CiteSeeker is to trav-
erse a server’s documents as a tree.

To avoid loops a mechanism of “memorizing” the
documents already searched must be implemented. That
means storing the documents URLs in some way. Col-
lecting each individual URL visited would cause similar
problems as gathering the documents contents – insuffi-
cient space as CiteSeeker performs a long-term search
(hours, days, weeks, months, etc.). If we take the lower
bound of Web size from Section III for granted, then
there are about 1010 URLs, each identifying one docu-
ment. Suppose a URL is a 50 B string on average. Then
the total space required to store these URLs is
 1010 URL x 50 B = 5 x 1011 B ≈ 500 GB (3)

Thus, to keep track of as many documents searched
as possible URLs have to be managed in a more eco-
nomical way.

B. Data Structures
The entire organization is depicted in Figure 1. A few

data structures have to be introduced: Pending Servers,
Pending Documents, Completed Servers, Completed
Documents. The terms need to be explained.

Pending Servers is a queue of the servers to be
searched (or, actually, the documents residing on those
servers). Initially, it is an ordered set of start points for
the search engine. Thus, it may also be referred to as a
roots queue. It is a queue without duplicities, so there is
an underlying hash table to avoid them. This hash table
has a server’s URL as its key and a reference to the
same object in the queue as its value. Pending Docu-
ments is a queue of the documents that have to be
searched. All of these documents are on one particular
server. Their URLs may be relative to that server. It is a
queue without duplicities as well. Completed Docu-
ments is a hash table of the documents on one server that
have already been searched. Completed Servers is a
hash table of the servers that have been “entirely”
searched and are now “asleep”. They may also be re-

ferred to as “skeletons”. The “entirety” of the search
will be explained below.

C. Web Crawling Activity
A typical procedure of CiteSeeker activity concerned

with finding as many documents as possible looks like
this.

- A server is popped from the queue of pending serv-
ers. At the beginning the queue contains servers
(their URLs) provided by the user or obtained from
external resources such as invoking another search
engine.

- Once a server has been selected the search engine
starts crawling it from its root. Every document is
searched for search strings (citations) as well as for
links to other files. Strictly said, only those docu-
ments that are placed on the server currently being
searched are processed. The others (again, their
URLs) are added to the pending documents of
“their” server in the Pending Servers queue pro-
vided there is one. In the opposite case, the server
is created and enqueued, first.

- Having been handled, each document (its URL)
from the current server is added to the Completed
Documents table. In this way it is ensured that the
document shall never be processed again if refer-
enced from within the same server. In this manner a
tree of “all” documents relative to one server is be-
ing constructed. More about this tree will be said in
Section V.E.

- When no more files on the server have been found,
it is checked whether there are some records in the
Pending Documents – files that need to be
searched. This is also done in conjunction with the
completed documents so that no double processing
of a file could be possible. When a server has been
completely searched, i.e. no new links to relative
documents have been found and the pending docu-
ments queue is empty, the server is declared as “en-
tirely searched” and is set “asleep”. That means its
URL is added to the completed servers. These
“skeletons” will never be “resurrected” again. So if
a document is encountered during further crawling
whose server is listed in the completed servers ta-
ble, it will be ignored.

D. Sparing Space
In CiteSeeker a server is “entirely” searched even if

there may be undiscovered documents which will per-
haps be referenced later from other servers. This is a
trade-off between accuracy and space requirements.
Briefly, documents’ URLs are kept in memory as long
as the search is running on their server (let alone their
possible presence in the pending documents of the pend-
ing servers before their server is processed), then they
are released and are represented as a whole only by the
server’s URL. In this way we spare a significant number
of URLs as their total number is given by this formula:

total URLs = pending servers + completed servers +
 pending documents + completed documents (4)

Figure 1- Fundamental data structures

Figure 2- Communication flow

Note that the first two terms (pending servers and
completed servers) are thought to be global objects
whereas the completed documents are local objects
(relative to the current server which is being searched)
and the pending documents are both (they are present on
the current server as well as on the pending servers).
The resulting number may differ in relation with how
much activity is done in parallel. The number of pending
servers, completed servers, pending documents and
completed documents might be in millions each, say
tens of millions of URLs at most to comply with the
numbers stated in Section III. Again, if a URL is a 50 B
string then the memory requirements to store all of them
are approximately

(K1 x 106 + K2 x 106 + K3 x 106 + R) URL x 50 B ≈
 ≈ 500 MB + R x 50 B (5)
where K1 is the number of pending servers, K2 number
of completed servers, K3 number of completed docu-
ments (each represents the order of millions) and R is
the number of pending documents.

When R = 0 this is 103 times less than with the brute
force method in (3). We can manipulate the pending
documents and keep R arbitrarily low or high. In case of
insufficient memory they are simply not added to the
table. On the contrary, if there is space enough the serv-
ers that would normally be placed to the “skeletons”
might be enqueued in the Pending Servers again in order
to collect new relative URLs on their way to the queue
head. This would be particularly useful for the very first
servers to be searched because they have no or only few
relative documents. Likewise, a temporarily unavailable
server or an unavailable document may be enqueued
once more (or even a couple of times) according to how
much space is at our disposal. So the total cost may
adaptively change and might be as little as hundreds of
megabytes.

E. Documents Tree
How to traverse this tree of documents on one server?

All the documents must be searched whatever the order.
So there is no need for the tree to be balanced in any
way.

If breadth-first search is used the helper data structure
is a queue [6]. There are right siblings, children of left
siblings and children of the current node (document) in
the queue. In general, breadth-first search requires the
more space the broader the tree. Specifically, if each
node has a fixed number of children, the number of
nodes at the same level grows exponentially with the
level number [6] and running out of memory would be
very fast. If depth-first search (backtracking) is used
instead, the underlying data structure is a stack. There is
no difficulty with the tree breadth whatsoever. Only a
part of the tree needs to be stored at a time – the nodes
on stack and the nodes referenced by them. Note that the
only content of nodes is a URL of an individual docu-
ment. In general, at a time there is only the current node,
its direct ancestors and their children in memory. Of
course, even this method may fail in case of very high

trees (the worst case is a simple linked list). Then some
of the nodes must easily be thrown away without search-
ing.

Although the time complexity in either case is O(N)
where N is the number of nodes [6], the space complex-
ity depends on the shape of the tree. Depth-first search
has difficulties with high trees, breadth-first search with
broad trees. High document trees on a server are sup-
posed to be less frequent. In addition, the depth-first
search enables a faster access to tree leaves where PS
and PDF files often reside. Thus, CiteSeeker uses depth-
first search.

VI. SOME NOTES ON IMPLEMENTATION

As C# and .NET Framework have a strong support of
Internet and Web services related issues, connecting to
the Internet may be done within a couple of lines of
code. The whole functionality is provided by 18 public
classes, the most important of which will be mentioned
only. Briefly, they can be derived by object decomposi-
tion from Figure 1.

A. Server
Server is the class representing servers and its rela-

tion with the Document class is fundamental for under-
standing the process of Web crawling. Its private attrib-
utes are:

- name
- pendingDocsQueue
- pendingDocsTable
- completedDocsTable
- docsStack
- references

Name is the protocol and hostname terminated by a
slash by default. PendingDocsQueue is a queue of
documents that should be processed. Documents are
enqueued in this queue when links to them are found on
other servers. (In fact only the documents‘ URLs are
enqueued. The document instances are not created until
they are dequeued.) PendingDocsTable is a hash table
upon this queue with URLs as its keys. It ensures that
the URLs in the queue are unique. CompletedDocsTable
is a hash table of URLs of those documents on this
server that have been searched already. DocsStack is a
stack for the depth-first traversal of the documents tree.
References is a count that counts how many times this
server (or a document on it) has been referenced from
other servers (or documents on them). It is the priority
of the server in the Pending Servers queue.

Global variables are defined in this class as well:
- pendingServersQueue
- pendingServersTable
- completedServersTable

PendingServersQueue is the queue of servers that
shall be searched, pendingServersTable helps avoid
duplicate servers and access them quickly when a docu-
ment is added to them and completedServersTable is a
hash table with names of servers already searched.

B. Document
Document is a node in the Web graph. The tree root

(a server’s default index file) is a document too. This
class provides methods that deal with unpacking, text
extraction, finding references to other documents and so
forth. The private attributes are:

- URL
- content
- references
- server

URL is the document’s unique identifier, content is
the document’s content in a byte array. References is a
list of references to other documents that were found in
the content. Server is a reference to the server object to
which the document belongs.

After downloading a document, its URL is added to
the table of completed documents and removed from the
queue of pending documents. Here comes a tricky part
of the program. After the download the original docu-
ment’s URL and the one returned from the Internet
resource are compared. The string below shows the
components of the most comprehensive URL:

protocol :// host : port / path / file # fragment ? query
The problem is that the original and returned URLs

may differ not only in the fragment or query compo-
nents, which CiteSeeker automatically removes from
both URLs, but also in the protocol, host, path and file
components. This happens when a Web page redirects
the request to another Web page. If CiteSeeker added
only the URL returned to the table, it would mean that
the original URL may be accessed later again. If only
the original URL is stored, the search engine will never
learn the “real“ URL of the resource.

CiteSeeker remembers both of the URLs, which has a
negative impact on the size of the table of completed
documents. In general, Web robots have problems with
dynamic Web pages. The exact method of preventing
visits to URLs already visited would involve storing
unique keys of documents contents, which slows down
the operation.

Removing the query component is very sensitive with
dynamic Web pages such as PHP and ASP, which often
accept query parameters to eventually provide pages
with various content. If the parameter is removed, the
dynamic page mostly uses a default one. Leaving the
queries would mean an enormous growth of the amount
of URLs that would have to be added to hash tables.
Moreover, nothing is known about the content of dy-
namic pages in advance. All these URLs would have to
be accessed and only the Content-Type in HTTP header
could tell us something. Though it is not always present
in the header and it is not very exact. So there is a risk
of downloading too many irrelevant files. For these
reasons CiteSeeker does not consider queries.

C. Searcher
This class does the actual searching (exact and fuzzy)

of documents for citations. It works only with the final
state of documents – their plain text converted into
lower case.

The actual search routine combines exact and fuzzy
search methods to quickly find citations of particular
papers in the text of a document. The basis is to make a
fast decision which throws away irrelevant documents
and then to examine the perspective documents in detail.
Originally, we wanted to search fuzzy only the refer-
ences section of a paper. If the references section was
not found, the document would be skipped (the fast
decision). However, it might be very tricky to rely that
the references sections in articles have always the same
form and that they begin with “References“ or “Bibliog-
raphy“ titles. The documents themselves would have to
be analyzed using artificial intelligence techniques like
in ResearchIndex (see Section III.B).

At last, we chose this approach: If an author’s name
is not found in the document with exact search, the
document is ignored (fast decision). Otherwise, a little
part of the document past the author’s name is searched
fuzzy for publications by this author. In this way, not
only citations are found, but also documents where the
author’s name and the publication title are next to each
other. But that may be useful as well.

If we denote N the number of author groups, M the
number of authors in a group, D the number of publica-
tions of that author (user inputs) and P the number of
occurrences of an author in the document, the time com-
plexity of this algorithm as to the number of fuzzy
search invocations is

O(N M P D) (6)
It is simply four nested loops. Of course, M, P, D

should rather be considered average values. The com-
plexity of the fuzzy search itself depends on the length
of the publication name and the search part length. See
(2).

VII. INPUTS AND OUTPUTS

The basic communication scheme of CiteSeeker is
depicted in Figure 2. The TXT files are the primary
input for CiteSeeker. They represent authors and their
publications whose citations should be found, start
points (a list of URLs) which the search will start from
and “geographic” restrictions for the search. The LOG
files are text files with search results – URLs where
citations were found along with the similarity of publica-
tions cited and searched for, error and debug messages,
a list of servers completed (searched) and some statisti-
cal summary (time and numbers).

Serialized objects are stored to the DAT files. These
files can be used later when a suspended search is re-
sumed. Google search engine may be invoked at the
beginning to get some start points. The last group are
external utilities for text extraction, archive decompres-
sion and fuzzy search. The Web may be thought of as
lying in the background.

VIII. RESULTS

The following two tables demonstrate the capabilities
of CiteSeeker used to find citations of 129 publications

by one author on two servers. CiteSeeker was running
on a machine with two Intel 447 MHz processors, 1 GB
RAM and Windows 2000 on May 15, 2003.

Table I- Searching http://wscg.zcu.cz

Execution time 3 hrs 01 min
Documents searched 1 335
Documents successfully searched 8
New servers found 82
Kilobytes processed 794 031
Archives checked 270
PS and PDF checked 811
Text extraction errors 8
Extracted PS (average time) 255 (19.17 sec)
Extracted PDF (average time) 548 (0.57 sec)

As can be seen in Table I CiteSeeker completely

searched the server wscg.zcu.cz in about three hours,
processed 1 335 documents (in 8 of them one or more
citations were found) with the total size of 794 MB
approximately. Links to documents on 82 different serv-
ers (including wscg) were found. 270 of the documents
were archives. 811 PS and PDF files were checked and
8 errors (1 %) occurred during the text extraction. (This
is the official number derived from the return codes of
text extraction programs. The actual number is estimated
to be much higher. The correctly extracted text is not
exactly what would be seen in a viewer, either. Slight
differences must always be taken account of.) The aver-
age PS extraction time was 19.17 sec while the average
PDF text extraction time was only 0.57 sec.

Although the Internet connection speed (roughly
100 kB / sec) had its influence on the resulting time, it is
obvious that extracting text from PostScript files makes
up 40 – 45 % and from PDF files only 2 – 3 % of the
total search time. The poor performance of pstotext is
documented in Table II in which pstotext extracts text
not only from PS files but also from PDF files.

Table II- Searching http://wscg.zcu.cz without pdftotext

Execution time 5 hrs 02 min
Documents searched 1 343
Documents successfully searched 6
New servers found 82
Kilobytes processed 794 132
Archives checked 270
PS and PDF checked 818
Text extraction errors 61
Extracted PS (average time) 261 (18.77 sec)
Extracted PDF (average time) 496 (10.42 sec)

In this test, which was run on April 24, 2003 on the

same computer a slightly modified pstotext was used to
improve text extraction from PDFs. The search took
now about 5 hours with less success than in Table I. 61
errors (7.5 %) occurred during text extraction (again,
experiments have shown that the actual error rate is

twice as high at least). The average time of text extrac-
tion from PDFs was 10.42 sec, which made up about
28.5 % of the resulting time in total. Thus, as to the text
extraction from PDF files, pstotext is at least 10 times
slower than pdftotext. No experiments were made with
PreScript (see Section II.A) for extracting text from PS
files, but it is assumed that it might speed up the search
significantly.

A. Memory Cost
Next example is a search on http://www.siggraph.org

performed on June 9, 2003 on a machine with an Intel
398 MHz processor, 500 MB RAM and Windows 2000.

Table III shows the time development of memory
used. The time variable is given by the number of
documents searched, which were sampled six times.
Each data structure is represented by a row of numbers
of elements included at those six time points and a row
of its corresponding sizes in bytes. The table of com-
pleted documents enlarges logically, the table of pend-
ing documents increases as well because of documents
with different original and real URLs (see Section VI.B)
that remain in the table. The height (and size) of the
documents tree first increases and then decreases as is
typical for depth-first search. Both the queue and table
of pending servers expand as new servers are encoun-
tered during the search.

The data structures are partly in overlay thus the same
data may be included in the size. Note the size of both
the queue and table of pending servers. The hash table is
clearly more memory demanding but it does involve the
current server whereas the queue does not (see Section
VI.B). Sizes of other objects that do not change are not
shown.

IX. CONCLUSIONS

This paper introduced CiteSeeker, a tool for auto-
mated citations retrieval on the Web using fuzzy search
techniques. CiteSeeker is based on the .NET platform
and is almost entirely written in C#. However, it uses a
number of external utilities that help handle non-textual
documents such as archives, PostScript or PDF files, etc.
Inputs for CiteSeeker and its outputs are text files, but
CiteSeeker also provides a comfortable graphical user
interface, which allows the user to set many search pa-
rameters or submit queries to Google. CiteSeeker is
available for download at [32].

CiteSeeker has shown its strengths in searching for
citations on several “safe” servers, however, it did en-
counter problems when crawling the “farther” Web
where it had difficulties especially with dynamic Web
pages. CiteSeeker may be particularly useful for search-
ing servers with conference papers (such as wscg.zcu.cz)
that have not yet been crawled by a conventional search
engine. As a file name and path is also a URL, Cite-
Seeker can also search a local disk or CD provided the
documents link to each other.

The following list enumerates possible improve-
ments:

- Create more search threads.
- Enhance reliability with dynamic or redirected Web

pages. See section VI.B.
- Use PreScript instead of pstotext. See Section VIII.
- Add database support. Currently, CiteSeeker is lim-

ited by physical memory or virtual memory paging
file. Some tables might be located in a database.

- Enhance the site selection heuristics, in general
This work has been partly supported by grants

No. MSM 235200005 and ME494.

REFERENCES

[1] Lawrence S., Giles C. L.: “Accessibility of Informa-
tion on the Web”, Nature, Vol. 400, pp. 107 – 109,
July 8, 1999

[2] Lawrence S., Giles C. L., Bollacker K.: “Digital
Libraries and Autonomous Citation Indexing”, IEEE
Computer, Vol. 32, No. 6, pp. 67 – 71, 1999

[3] Myers E.: “An O(ND) Difference Algorithm and its
Variations”, Algorithmica, Vol. 1, No. 2, pp. 251-
266, 1986

[4] Nevill-Manning C. G., Reed T., Witten I. H.: “Ex-
tracting Text from PostScript”, Software Practice
and Experience, Vol. 28, No. 5, pp. 481 – 491, 1998

[5] Ukkonen E.: “Algorithms for Approximate String
Matching”, Information and Control, Vol. 64, pp.
100 - 118, 1985

[6] Kucera L.: “Combinatorial Algorithms” (in Czech),
SNTL, Praha 1989

[7] Adobe Systems Incorporated: Portable Document
Format Reference Manual, Version 1.2, November
27, 1996

[8] Ghostscript, Ghostview and Gsview:
http://www.cs.wisc.edu/~ghost/index.htm

[9] NZDL:PreScript: http://www.nzdl.org/html/prescript.html

[10]Kansas City Public Library - Introduction to Search
Engines: http://www.kclibrary.org/resources/search/intro.cfm

[11]Google Review on Search Engine Showdown:
http://www.searchengineshowdown.com/features/google/review.h
tml

[12]Computer Science Papers NEC Research Institute
CiteSeer Publications ResearchIndex:
http://citeseer.nj.nec.com/cs

[13]AGREP, an approximate GREP:
http://www.tgries.de/agrep/

[14]Xpdf:Download:
http://www.foolabs.com/xpdf/download.html

[15]Google Web APIs – Home: http://www.google.com/apis/

[16]Search Engine Showdown Reviews:
http://searchengineshowdown.com/reviews/

[17]Internet Software Consortium: http://www.isc.org/

[18]Google Database Components:
http://searchengineshowdown.com/features/google/dbanalysis.sht
ml

[19]Freshness Showdown:
http://www.searchengineshowdown.com/stats/freshness.shtml

[20]Remove Content from Google’s Index:
http://www.google.com/remove.html

[21]Google Information for Webmasters:
http://www.google.com/webmasters/4.html

[22]ISI Web of Science:
http://www.isinet.com/isi/products/citation/wos/index.html

[23]SWISH++:
http://homepage.mac.com/pauljlucas/software/swish/

[24]The pstotext program:
http://www.research.compaq.com/SRC/virtualpaper/pstotext.html

[25]Print Center Features – Adobe PostScript vs. Adobe
PDF: http://www.adobe.com/print/features/psvspdf/main.html

[26]Download: http://www.shamrock.de/cgi-
bin/download.pl?pkunzip.exe

[27]Info-ZIP’s UnZip: http://www.info-
zip.org/pub/infozip/UnZip.html

[28]The gzip home page: http://www.gzip.org/

[29]tar – GNU Project – Free Software Foundation
(FSF): http://www.gnu.org/software/tar/tar.html

[30]http://search.cpan.org/src/MLEHMANN/String-Similarity-
0.02/fstrcmp.c

[31]Netcraft: Web Server Survey Archives:
http://news.netcraft.com/archives/web_server_survey.html

[32]CiteSeeker Home Page:
http://home.zcu.cz/~dalfia/thesis.htm

Table III- Memory cost samples when searching http://www.siggraph.org

Documents searched 100 500 1 027 4 820 10 757 17 862
Pending Docs table 96 496 403 870 1 959 2 688
Size [B] 5 247 32 865 26 775 56 689 143 779 204 611
Completed Docs table 102 505 1 005 4 822 8 857 15 343
Size [B] 6 463 31 423 63 099 330 010 636 857 1 165 061
Documents tree height 9 26 25 66 39 3
Size [B] 3126 10334 7489 15922 10841 1423
Pending Servers queue 39 149 319 1 214 1 984 2 781
Size [B] 11 346 40 405 85 416 333 245 574 126 819 907
Pending Servers table 40 150 320 1 215 1 985 2 782
Size [B] 25 921 115 316 183 918 741 477 1 375 067 2 204 448
Memory usage [B] 24 358 912 29 646 848 58 949 632 107 433 984 107 184 128 106 713 088

