
Document Classification Using Itemsets

-L�t�+\QHN
*

jiri.hynek@insite.cz

.DUHO�-HåHN
**

jezek_ka@kiv.zcu.cz

Abstract: The essential point of this paper is to develop a method for automating time-
consuming document classification in a digital library. The method proposed in this paper
is based on itemsets, extending traditional application of the apriori algorithm.

Keywords: itemset, classification, class generation, cluster, clustering, apriori algorithm,
document similarity, document categorization.

1 Introduction

1.1 Chapter Organization

Major difference between clustering and classification is described in the first part of this
paper. The second part includes a description of the apriori algorithm applied to a real-world
application. The novelty itemsets classification method is presented in the third part.
Evaluation and motivation for further research are summarized in the fourth part.

1.2 Classification Versus Clustering

The objective of this paper is automatic classification of documents into specific topic areas.
At this point we must emphasize the difference between two evidently distinct terms:
classification and clustering. In case of classification, instances (documents) are associated
with groups, or classes. Large volumes of data break apart into several discrete classes – these
classes are a priori determined on the basis of a training data set. On the other hand, in case of
clustering we are looking for groups of similar documents, maximizing intra-class similarity
while minimizing inter-class similarity. Unlike in case of classification, we do not a priori
know attributes characterizing each class. Therefore, at the end of clustering analysis,
semantics must be assigned to each class by an analyst.

There are methods for document clustering by means of document-to-cluster similarity
function (coefficient). Should the value of coefficient exceed threshold value θ, the document
falls into the pertinent equivalence class.

Clustering can be based on a symmetric similarity matrix SIM with k × k dimension
(having k documents in our library, simi,j representing the document-to-document similarity
function).

*
LQ6,7(� V�U�R�� 5XEHãRYD ��� ��� �� 3O]H�

** Department of Computer Science, the University of West BohHPLD� 8QLYHU]LWQt ��� 3O]H�

sim11 sim12, …, sim1k

sim21 sim22, …, sim2k

…

simk1 simk2, …, simkk

We can implement hierarchical clustering by setting different threshold values for each level
of hierarchy. At the end we will obtain a concept hierarchy represented by a tree. We can use
a graph, nodes represented by documents and edges drawn if Sim (di, dj) ≥ θ. Cluster
corresponds to a connected component in such a graph.

2 Apriori Algorithm

The Apriori algorithm, first proposed by Agrawal and Srikant is an efficient algorithm for
knowledge mining in form of association rules [3]. We have recognized its convenience for
document categorization. The original Apriori algorithm is applied to a transactional database
of market baskets. In our case, instead of a market basket, we work with the basket of
significant terms occurring in a text document and the transactional database is in fact a set of
documents (represented by sets of significant terms). Consistently with the usual terminology
let us denote terms as items and basket of terms (set of items) as an itemset.

Let πi is an item, Π = {π1, π2, … ,π m} is an itemset and ∆ is our database of
documents. The itemset with k items is called k-itemset. Frequency of an itemset is defined as
a simultaneous occurrence of items in the data being observed. Within our investigation we
often utilize the threshold value θ employed for the minimum frequency of an itemset. Should
frequency of an itemset exceed this threshold value, it is designated as a frequent itemset (we
are trying to avoid the original – and rather confusing – term „large“). The transaction support
in our case corresponds to the frequency of an itemset occurrence in the database ∆. Our goal
is to discover frequent itemsets in order to characterize individual leaf topics in the digital
library tree (topic tree).

 Frequent itemsets’ searching is an iterative process. At the beginning all frequent 1-
itemsets are found, these are used to generate frequent 2-itemsets, then frequent 3-itemsets are
found using frequent 2-itemsests, etc.

Let us suppose we have TDS distinct significant terms in our text database ∆.

Firstly we generate candidates of frequent 1-itemsets (shortly candidate 1-itemsets).
These are contained in our application directly in DF (Document Frequency) table. An
example of candidate 1-itemsets and their frequencies is shown in tab.1:

 itemset frequency in %

 {π1} 12

 {π2} 0.5

 {π3} 10

 {π4} 3

 {π5} 11

 {π6} 8

 {πTDS} 2
 Tab.1 Candidate 1-itemsets

Consequently, we compute frequent 1-itemsets. If predetermined minimal support θ shall be
7%1, the resulting frequent 1-itemsets are boldfaced in tab.1.

In the next step, we generate 2-itemsets from frequent 1-itemsets. Suppose the result is in
tab.2, where frequent 2-itemsets are boldfaced again.

 itemset frequency in %

 {π1, π3} 8

 {π1, π5} 9.5

 {π1, π6} 7

 {π3, π5} 8.5

 {π3, π6} 4

 {π5, π6} 5.5

 Tab.2. Candidate 2-itemsets

Generation of subsequent candidate and frequent 3-itemsets continues as follows. If e.g. the
itemset {π1, π3, π5} with frequency 7.1 is the only one recognized as frequent 3-itemset, the
process of frequent itemsets’ searching terminates with regard to Apriori property (“all non-
empty subsets of a frequent itemset must be frequent”). While implementing this method, we
utilize a technique similar to transaction reduction method: a document that does not contain a
k-itemset can be left out of our further consideration, since it cannot contain any of (k+1)-
itemsets.

3 Itemsets Classification Method

3.1 Terminology

Within the framework of this paper, we use the following notation:

Π = Frequent itemset

|Π| = Cardinality of the itemset Π

T = Leaf topic (representing a categorization class)
D = Document

D (D bar) = A set of significant terms contained in document D

L = The number of leaf topics

Ni = The number of frequent itemsets having cardinality i

DΠi = The set of documents containing the itemset Πi
DTi = The set of documents associated with leaf topic Ti

|DTi| = The number of documents associated with leaf topic Ti

Ci = Set of itemsets characterizing leaf topic Ti

1 The threshold value θ can vary for 1-itemsets, 2-itemsets, 3-itemsets, etc. Generally speaking, the higher the
cardinality of an itemset, the lower value of θ can be chosen. Fine tuning of θ will be subject to further research.

On the basis of the apriori algorithm above, we will define frequent itemsets of various
cardinalities.

For pairs: Π1, Π2, …, ΠN2

For triplets: ΠN2+1, ΠN2+2, …, ΠN3+ N2

For quadruplets: ΠN3+N2+1, ΠN3+N2+2, …, ΠN4+N3+N2

etc.

3.2 The Classification Problem

The task of classification in our information system is to serve two functions:

1. Document classification, i.e. automatic association of documents with topics (the principle
can be used for knowledge classification in general);

2. Automatic identification of a context (topic) upon entering a user query.

The classification problem can be divided into two parts: training phase and classification
phase. The training phase consists of the following:

• Defining a hierarchy (tree) of thematic areas (topics) by an expert;

• Manual insertion of a certain number of documents into topics (for the time being, more
than 1200 documents), i.e. classification attributes are defined for each class (training data
set). The expert defines L classification classes (L represents the number of leaf topics),
categorizing all “training” documents available. Each topic should be assigned a
statistically significant number of documents, say, at least ten.

• Automatic generation of representative itemsets of various cardinality for each topic (i.e.
definition of clusters) – see below.

While performing classification, we utilize representative itemsets to classify documents into
corresponding topics (each document is currently associated with 3.24 leaf topics on the
average).

The classification algorithm can be evaluated in terms of accuracy and speed.
Accuracy can be measured by means of a test-set, the members of which have a priori known
classification. Accuracy is expressed as a ratio between the number of correct classifications
and cardinality of the test-set. Complexity of such classification is determined by the number
of topics (i.e. clusters) the classification algorithm must choose from.

3.3 Itemsets Classification Method

Training Phase

For each itemset Π we can find a characteristic set of documents containing Π. Let’s
designate this set of documents as DΠ. It is obvious that cardinality of DΠ will be higher than
a certain threshold value, since Π was selected as a frequent itemset.

Itemset Π1 corresponds to the set DΠ1, Π2 corresponds to DΠ2, etc. If we will work
with pairs, triplets and quadruplets only, we will create N2 + N3 + N4 sets of documents. E.g.
DΠi = {D2, D16, D123, …, D765}.
By analogy, for each leaf topic Ti there is a characteristic set of documents falling into this
topic. Let’s designate this set as DTi. Topic T1 corresponds to the set DT1, topic T2 to DT2,
etc. Altogether we will make L sets. For example, DTi = {D3, D16, D125,…, D815}.

 Our goal is to specify a certain number of itemsets for each topic, where each itemset
is associated with a subset of the set of leaf topics. Namely, itemset Πj is associated with topic
Ti corresponding to the values of wΠj exceeding some threshold value θ. The weight wΠj is
calculated, for example, as follows:

|DTi| component is used for normalizing with the number of documents associated with the
topic. Upon associating itemsets with individual topics based on the formula above, we will
acquire sets of itemsets C representing particular topic T. For example, topic T1 will
correspond to C1 = {Π2, Π5, …, Π34}, topic T2 to C2 = {Π1, Π6, …, Π33} … etc. up to CL.

Classification Phase

Within the process of document classification, we must take into account cardinality of
itemsets in order to distinguish between correspondence in pairs and correspondence in
quadruplets, for instance. That is why we define a weight factor corresponding to the
cardinality of an itemset. For pairs we will use wf2, for triplets wf3, for quadruplets wf4, etc.
The higher the cardinality, the higher the weight factor.

Now we can proceed with classifying a document into a topic (or several topics). Let’s
suppose, set Cj contains elements Π1, Π2, …, Π|Cj|. We will compute the weight corresponding
to the accuracy of associating document D with topic Tj:

In other words, the classification weight is determined by the sum of weight factors for all
itemsets of a given topic, which (the itemsets) are contained in the document being classified.
With some simplification, we could call the above criterion the nearest neighbor criterion.

The document will be associated with topic Tj corresponding to the highest weight
WTj. Naturally, we can desire to associate the document with several topics. If this is the case,
we will classify the document to all topics Tj where WTj exceeds certain threshold value θ.

3.3 Automatic Identification of the Context

An analogy of the itemsets classification method can be used for another type of application:
automatic identification of the context. The user may wish to enter his/her query at the root
level of the tree of topics. Query at that moment can be treated as a document being classified
using the itemsets classification method. The system returns a set of documents or topics
corresponding to the query entered. This feedback can be used either as a systems response,
or a semi-product that will be subject to further searching. We can as well expand the user
query by terms specific for a given context and use this expanded query in further processing
(such as full-text search). We believe that this approach could improve precision of the
information retrieval process.

Li
DT

DTD
w

i

ij

j ...,,2,1=
∩Π

=Π

∑
=

Π =⊆Π∧∈Π=
j

ij

C

i
ijiT LjallforDCwherewfW

1

...,,2,1

4 Evaluation and Further Research

The method proposed in this paper shows viable within the commercial application it will be
applied to. The authors believe that by implementing the method the task of document
classification will become more efficient.

Further research will focus on tuning the weigh-factor parameters wf2, wf3, etc. and
observing their impact on the accuracy of classification. The study will also concentrate on
the method of selecting itemsets and computing the weight wΠj, as well as fine tuning the
threshold value θ determining frequent itemsets.

The complexity of the Apriori algorithm is much dependent on selecting θ value for
marking an itemset as frequent / non frequent. Implementation leads to a reasonable
polynomial-bound problem. The complexity of the classification can be, with some
approximation, expressed as follows:

CAVG × L × K (= CTOT × K), where CAVG is the average number of itemsets in C, L is the
number of leaf topics, K is a constant expressing complexity of matching itemsets in C with
the document being classified2 and CTOT is the total number of itemsets over all classes C.

The complexity of classification can be further reduced by means of utilizing a
modification of the apriori property. We can observe transitive dependence relationships
among itemsets in class C and take advantage of this dependence: if an itemset Π is not
contained in the document being classified (D), none of the itemsets in C dependent on Π can
be contained in D. We can have, for example, the following dependencies:

{ π1, π3} {π1, π3, π5} { π2, π6}

{ π1, π3, π6} {π2, π3, π6}

 {π1, π2, π3, π6}

Should this method, or its modification, prove efficient in the real-world environment, it will
become a part of an extensive application – the digital technical library currently used by
energy utilities within the Czech Republic.

References

1. Bulletin of the Technical Committee on Data Engineering, June 1998, Vol. 21, No. 2, IEEE
Computer Society

2. Kotásek P., Zendulka J.: AprioriItemset – A New Algorithm for Discovering Frequent Itemsets,
ISM 99, April 27-29, 1999, Czech Republic

3. Agrawal et al.: Advances in Knowledge Discovery and Data Mining, MIT Press 1996, pp. 307-
328

2 Constant K is clearly dependent on the size of the document being classified, however, it is important to note
that doubling the number of terms in the document being classified does not necessarily mean doubling the
classification time. We are using only significant terms (leaving stop words out), neglecting repetitive
occurrence of these terms.

