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Abstract: The CiteSeer digital library is a useful source of bibliographic information. It allows for 

retrieving citations, co-authorships, addresses, and affiliations of authors and publications. In spite 

of this, it has been relatively rarely used for automated citation analyses. This article describes our 

findings after extensively mining from the CiteSeer data. We explored citations between authors 

and determined rankings of influential scientists using various evaluation methods including cita-

tion and in-degree counts, HITS, PageRank, and its variations based on both the citation and colla-

boration graphs. We compare the resulting rankings with lists of computer science award winners 

and find out that award recipients are almost always ranked high. We conclude that CiteSeer is a 

valuable, yet not fully appreciated, repository of citation data and is appropriate for testing novel 

bibliometric methods. 
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Introduction 

Data from CiteSeer have been surprisingly little explored in the scientometric lite-

rature. One of the reasons for this may have been fears that the data gathered in an 

automated way from the Web are inaccurate – incomplete, erroneous, ambiguous, 

redundant, or simply wrong. Also, the uncontrolled and decentralized nature of 

the Web is said to simplify manipulating and biasing Web-based publication and 

citation metrics. However, there have been a few attempts at processing the Cite-

Seer data which we will briefly mention.  

Zhou et al. (2007) have investigated documents from CiteSeer to discover 

temporal social network communities in the domains of databases and machine 

learning. On the other hand, Hopcroft et al. (2004) track evolving communities in 

the whole CiteSeer paper citation graph. An et al. (2004) have constructed article 

citation graphs in several research domains by querying CiteSeer and have ex-

plored them in terms of components. Popescul et al. (2003) have classified Cite-

Seer articles into categories by venues. Šingliar and Hausknecht (2006) cluster 

CiteSeer papers by topics based on their references to authors. Author co-citation 

analysis of CiteSeer documents in the XML research field has been conducted by 
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Zhao and Strotmann (2007) and Zhao and Logan (2002) and in computer graphics 

by Chen (2000). Bar-Ilan (2006) has used CiteSeer for a citation analysis of the 

works of a famous mathematician. A kind of citation analysis, but this time for 

acknowledgements, has also been performed by Giles and Councill (2004). Cha-

krabarti and Agarwal (2006) use CiteSeer data in their experiments with learning 

ranking functions for real-world entity-relation graphs. Feitelson and Yovel 

(2004) have examined citation ranking lists obtained from CiteSeer and predicted 

future rankings of authors.  

Most of the research activities mentioned above have been concerned with 

just a small part of the CiteSeer database, limited to a specific scientific field or 

even venue (conference or journal). Very few have dealt with the CiteSeer citation 

graph as a whole as we do in this study whose research questions are the follow-

ing: What is the nature of CiteSeer data? Can sufficiently large citation and co-

authorship graphs for publications and authors be constructed out of them? If yes, 

can we, based on those graphs, generate realistic rankings of salient researchers? 

In the rest of this paper, we will first describe the methods we work with, present 

the basic features of CiteSeer and its data and then show that we can answer yes to 

the last two questions. 

Methods 

In our previous work (Fiala et al. 2008 and Ježek et al. 2008), we have built on top 

of the well-known PageRank concept by Brin and Page (1998) and have modified 

this ranking function originally devised for the Web graph so as to evaluate author 

significance based on the citation as well as collaboration networks. The key con-

cept is that a citation from a colleague is less valuable than that from a foreign 

researcher. Thus, cited authors should be penalized for the frequency of collabora-

tion (co-authorship) with authors citing them. To add more information to the ci-

tation graph, we defined several parameters to weight its edges more discrimina-

tively than purely by citation counts. These parameters, calculated from the colla-

boration graph, are the following: 

 

a) cu,v is the number of common publications by authors u and v (i.e. the 

number of their collaborations, code-named COLLABORATION), 
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b) fu,v is the number of publications by author u plus the number of publica-

tions by author v (i.e. the total number of publications by those two au-

thors, code-named ALL_PUBLICATIONS), 

c) hu,v is the number of all co-authors (including duplicates) in all publica-

tions by author u plus the number of all co-authors (including duplicates) 

in all publications by author v, code-named ALL_COAUTHORS, 

d) hdu,v is the number of all distinct co-authors in all publications by author u 

plus the number of all distinct co-authors in all publications by author v, 

code-named ALL_DIST_COAUTHORS, 

e) gu,v is the number of publications by author u where u is not the only au-

thor plus the number of publications by author v where v is not the only 

author (i.e. the total number of collaborations by those two authors, code-

named ALL_COLLABORATIONS), 

f) tu,v is the number of co-authors (including duplicates) in common publica-

tions by authors u and v, code-named COAUTHORS, 

g) tdu,v is the number of distinct co-authors in common publications by au-

thors u and v, code-named DIST_COAUTHORS. 

 

Note that we make no distinction between authoring and co-authoring a publica-

tion. In either case, an author has published the publication. Also, for the sake of 

simplicity of parameters h, hd, t, and td, authors are considered as co-authors of 

themselves. For a much more detailed theoretical background as well as a practic-

al example, we refer the reader to the article by Fiala et al. (2008). 

Data 

CiteSeer
1
 gathers information mainly about computer science publications by 

crawling the World Wide Web, downloading, and automatically analyzing poten-

tial scientific publications (mostly PDF or PS files) and provides access to it via a 

Web interface and downloadable XML-like files that can be further processed by 

machines. The information in these XML files typically includes publication title, 

authors, their affiliations and addresses, abstract, and references. For our experi-

ments, we chose the CiteSeer data files from December 13, 2005. These are the 

                                                 

1
 http://citeseer.ist.psu.edu 
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most recent data files prior to transforming CiteSeer into CiteSeer
X
, which is 

dubbed ―the next generation CiteSeer‖ and which is still in a beta version. 

Possible data sources 

CiteSeer is just one of many of bibliographic databases the most widely used of 

which are presented in Table 1. We may divide the databases into two groups ac-

cording to their free availability or the way they are created and maintained. ACM 

Portal
2
 consisting of the ACM Digital Library and of the ACM Guide along with 

Scopus
3
 and Web of Science

4
 are commercial subscription-based services (al-

though some limited free access is provided by ACM) whereas CiteSeer, DBLP
5
, 

and Google Scholar
6
 are free for everyone with an Internet connectivity. On the 

other hand, CiteSeer and Google Scholar are automated systems while the data-

bases of ACM Portal, DBLP, Scopus, and Web of Science are created and main-

tained mostly manually needing much human labour.   

Table 1 Feature matrix of the main bibliometric systems as of October 4, 2010 

 
ACM  

Portal 
CiteSeer

X
 DBLP 

Google 
Scholar 

Scopus 
Web of 
Science 

Free partly yes yes yes no no 

Automated no yes no yes no no 

# records 1.59 mil. 32.23 mil. 1.46 mil. NA 42.74 mil. 45.68 mil. 

All bibl. data 
downloadable 

no yes yes no no no 

Reference  
linking 

yes yes partly no yes yes 

Citation linking yes yes partly yes yes yes 

# citations for a 
publication 

yes yes partly yes yes yes 

# citations for 
an author 

yes indirectly 
partly  

indirectly 
indirectly yes yes 

domain 
coverage 

computer 
science 

computer 
science 

computer 
science 

general general general 

 

As for the scope of the individual databases, the number of records in Table 1 

means actually the number of all bibliographic records in the database, i.e. the 

number of research papers indexed plus the number of articles cited by the papers 

                                                 

2
 http://portal.acm.org 

3
 http://www.scopus.com 

4
 http://apps.isiknowledge.com 

5
 http://dblp.uni-trier.de 
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indexed that are not in the database. For instance, the ACM Digital Library con-

tains 290 thousand documents; 1.59 million records are available in the ACM 

Guide. CiteSeer
X
 actually owns 1.67 million documents only. DBLP is somewhat 

different – it is not a document repository, it merely stores bibliographic records 

so there is no need to make a distinction between documents and records. Google 

Scholar does not reveal any details about its database so, with certainty, we can 

only say that, in October 2010, it provides about 8.94 million results as a response 

to the query ―the‖. (We are looking for documents containing the most frequent 

English word.) . Some of the results are documents but some of them are cited 

references only. Thus, Google Scholar currently provides access to no less than 

9 million bibliographic records. Until now, solely estimates of the relative size of 

Google Scholar have been made by comparing its overlap with other bibliograph-

ic databases. Most of the papers on this topic are listed by Franceschet (2010).  

While the absolute size of Google Scholar is unknown, a little bit more can 

be said about the documents it indexes – Meho and Yang (2007) report over 30 

different document types in a sample of Google Scholar records such as journal 

articles, conference papers, dissertations, theses, technical reports, etc. (A similar 

earlier study by Goodrum et al. (2001) identified the following main document 

types in CiteSeer – journal articles, conference proceedings, technical reports, and 

books.) Indeed, regarding the same approach to obtaining documents by crawling 

the World Wide Web and looking for anything that looks like a research paper (a 

computer science research paper in the case of CiteSeer), one might expect that 

the document types covered by both Google Scholar and CiteSeer are almost the 

same. 

Finally, the two huge human-made repositories of scientific literature, 

Scopus and Web of Science, make both available over 40 million records. Those 

42.74 million records in Scopus can be really retrieved, for instance by searching 

for articles with an arbitrary title (―%‖). If we restrict the search to articles pub-

lished since 1996, we get the actual number of full-text documents in the database 

– 22.37 million. This number (of full-text documents) cannot be found out from 

the Web of Science. 

Of the six databases, only CiteSeer and DBLP provide a full access to their 

bibliographic data in the form of one or more XML-like files. Unlike DBLP (see 

                                                                                                                                      

6
 http://scholar.google.com 
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Fiala et. al. 2008), CiteSeer data records are substantially more linked by citations. 

The free availability of downloadable XML data and the high density of the cita-

tion graph are the key features that make CiteSeer the best tool for automated bib-

liometric and citation analyses despite its errors. 

The other features in Table 1 describe more or less the user interface 

friendliness of the databases. In some of them, the user can go directly to the cited 

articles by clicking on the references in a paper (reference linking) or to the citing 

articles of the current paper (citation linking). We can get citation counts for an 

author directly or indirectly by counting citations to its publications (citations for 

a publication and citations for an author). These features are very limited in 

DBLP as it contains very few links between publications. The last aspect is the 

domain coverage of the databases – ACM Portal, CiteSeer, and DBLP cover 

mainly computer science whereas Google Scholar, Scopus, and Web of Science 

are general services. Let us recall that this paper deals with CiteSeer (and not Ci-

teSeer
X
) and that the relevant information in Table 1 is true for both of them ex-

cept for the number of records. 

Citation graphs 

CiteSeer data are much larger than DBLP data analyzed by Fiala et al. (2008). 

There are more than 1.8 million citations between 717 thousand publications. We 

took the publication citation graph as it was and constructed an author citation 

graph out of it. The only data pre-processing we performed was transforming au-

thor names into upper case, removing duplicate authors, parallel edges, and self-

citations. The resulting directed graph G of citations between authors has then 

some 411 thousand vertices (authors) and 4.8 million weighted edges (citations).  

We made no attempt at disambiguating authors and publications, which is 

a complicated and time-consuming task. Thus, one author name may represent 

many real people and a single researcher may be referred to with several names, 

e.g. ―Jack Dongarra‖ and ―Jack J. Dongarra‖ at positions 9 and 13 of the first 

ranking in Table 6 (Online Resource 1). Also, automatic name recognition in Ci-

teSeer produces errors and may identify absurd words as author names, e.g. ―Se-

nior Member‖ or ―Student Member‖ at positions 2 and 4 of the first ranking in the 

same table. As for publications, there may also be duplicates and other inaccura-

cies. It is unclear whether CiteSeer groups all similarly looking publications found 
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on the Web into one and if so, with what precision this happens. Nevertheless, if 

this was not the case, one might easily bias CiteSeer citation counts by placing 

many copies of particular articles all over the Web. We can expect as well that 

small typos in paper titles may wrongly result in new or missing publications, etc.  

All in all, computer-generated Web-based bibliographic data like in Cite-

Seer are always less reliable than those created by humans like in DBLP.  This is 

one of the reasons why they have been so little used in bibliometric studies so far. 

On the other hand, they are much larger and much more up-to-date and we believe 

that the democratic,  decentralized, and self-controlled nature of the Web itself 

makes it very difficult to manipulate Web-based bibliographic citations signifi-

cantly and systematically. Zhao (2005) indicates that citation analyses based on 

CiteSeer may be as valid as those based on conventional data sources. Therefore, 

analyzing CiteSeer data makes sense and can bring new bibliometric insights into 

recent computer science publications. 

Results 

In the following tables and figures, we present the results of applying twelve dif-

ferent ranking methods to the amended citation graph of authors described earlier. 

The first five rankings are by pure citation counts (Cites), in-degree of author cita-

tion graph nodes (InDeg), HITS authorities (HITS - see Kleinberg 1999), Page-

Rank (PR), and weighted PageRank (w). Next, we computed the previously de-

fined parameters c, f, g, h, hd, t, and td from the collaboration graph, incorporated 

them into the PageRank formula (for details, see Fiala et al. 2008) and obtained 

rankings a) – g) corresponding to the numbering in section Methods. 

Rankings 

In addition to computing the ranks of all authors in the citation graph by each 

ranking method, we also compared each ranking with the list of ACM SIGMOD 

E. F. Codd Innovations Award winners (http://www.sigmod.org/awards) like Sidi-

ropoulos and Manolopoulos (2005) to see how well they correlate with human-

made charts of influential computer scientists. In Tables 2 and 3, we can see the 

ranks by all methods of 18 researchers awarded from 1992 to 2009. One of the 

researchers, Patricia Selinger, does not appear in any ranking. She is not present in 

the CiteSeer data we analyzed. For all rankings, we calculated three simple me-
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trics characterizing the aggregate rank achieved by the awardees – worst rank, 

average rank, and median rank. The assumption is that the smaller are these val-

ues, the better is the ranking. In fact, an optimal ranking (including Patricia Selin-

ger) equivalent to the human-made list in terms of these metrics, would have a 

worst rank of 18, an average rank of 9.5, and a median rank of 9.5. 

Table 2 ACM Innovations Award winners and their ranks (part 1) 

Year Author Cites InDeg HITS PR w    

1992 Michael Stonebraker 137 87 170 35 36 

1993 Jim Gray 194 132 132 287 367 

1994 Philip Bernstein 1 477 1 767 2 055 4 884 4 749 

1995 David DeWitt 27 38 84 75 43 

1996 C. Mohan 2 634 2 419 3 996 4 945 4 958 

1997 David Maier 458 284 604 375 521 

1998 Serge Abiteboul 22 54 322 123 69 

1999 Hector Garcia-Molina 14 14 58 89 63 

2000 Rakesh Agrawal 3 9 112 41 15 

2001 Rudolf Bayer 29 834 26 272 19 969 43 206 48 897 

2002 Patricia Selinger      

2003 Don Chamberlin 5 497 4 577 4 474 7 162 9 125 

2004 Ronald Fagin 512 587 1 160 701 774 

2005 Michael Carey 161 163 220 308 306 

2006 Jeffrey D. Ullman 228 205 476 609 575 

2007 Jennifer Widom 7 15 103 81 29 

2008 Moshe Vardi 217 326 1 622 447 441 

2009 Masaru Kitsuregawa 16 497 12 603 7 972 27 477 42 133 
 Worst rank 29 834 26 272 19 969 43 206 48 897 
 Average rank 3 407 2 915 2 561 5 344 6 653 
 Median rank 217 205 476 375 441 

Table 3 ACM Innovations Award winners and their ranks (part 2) 

Year Author a b c d e f g 

1992 Michael Stonebraker 33 81 103 85 75 40 40 

1993 Jim Gray 335 917 1 238 698 879 479 396 

1994 Philip Bernstein 4 871 2 858 2 280 2 907 2 914 4 462 4 642 

1995 David DeWitt 55 46 49 30 45 22 42 

1996 C. Mohan 4 877 5 357 5 502 5 269 5 340 5 327 5 095 

1997 David Maier 537 169 128 117 161 446 473 

1998 Serge Abiteboul 76 43 47 36 42 44 66 

1999 Hector Garcia-Molina 78 23 22 45 18 34 76 

2000 Rakesh Agrawal 17 15 19 15 14 17 17 

2001 Rudolf Bayer 48 600 52 676 54 482 51 648 52 522 49 505 49 098 

2002 Patricia Selinger        

2003 Don Chamberlin 8 880 13 497 18 963 12 341 13 129 9 879 9 236 

2004 Ronald Fagin 838 419 457 476 416 658 795 

2005 Michael Carey 310 620 689 430 580 314 312 

2006 Jeffrey D. Ullman 560 427 349 547 388 415 588 

2007 Jennifer Widom 43 24 23 28 21 20 30 

2008 Moshe Vardi 507 100 114 144 106 349 443 

2009 Masaru Kitsuregawa 42 179 44 500 44 869 44 072 44 531 42 659 42 558 
 Worst rank 48 600 52 676 54 482 51 648 52 522 49 505 49 098 
 Average rank 6 635 7 163 7 608 6 993 7 128 6 745 6 700 
 Median rank 507 419 349 430 388 415 443 
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The baseline ranking PR appears in a coloured column. It has a median rank of 

375 which is outperformed only by ranking c) – ALL_COAUTHORS and by the 

both first-order methods Cites and InDeg. Its average rank 5 344 is forth best after 

HITS, InDeg, and Cites. The same holds for its worst rank 43 206. HITS is, 

somewhat surprisingly, the best ranking method as for the worst and the average 

rank. However, this is particularly thanks to the relatively high ranks (small num-

bers) for Rudolf Bayer and Masaru Kitsuregawa in comparison to the other rank-

ings. On the other hand, it is the second worst ranking in terms of the median 

rank. Only method a) – COLLABORATION is worse in this respect. 

A graphical presentation of the results in Tables 2 and 3 is given in Fig-

ure 1. Rakesh Agrawal, Jennifer Widom, and Hector Garcia-Molina are always 

top-ranked. While Rakesh Agrawal obtains the highest median rank of 16 and 

Hector Garcia-Molina never falls off the Top 100, Jennifer Widom’s result is re-

markable in that she received the award only in 2007 and thus could not attract 

citations after her nomination (CiteSeer data are from 2005). The rank series are 

quite stable – there are no evident outliers except a slight deterioration by HITS 

for the better ranked authors.  

 

 

Fig. 1 ACM Innovations Award winners and their ranks 
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A complete overview of top 40 scientists in all rankings may be found in 

Tables 4 through 7 (Online Resource 1) with award recipients printed in bold. A 

simple look at the tables reveals that the number of award winners varies between 

5 in Cites and f (COAUTHORS) or 4 in InDeg and d (ALL_DIST_CO-

AUTHORS) and 1 in PR or even 0 in HITS. This suggests that as far as the top of 

each ranking is concerned, any improved PageRank (with some additional infor-

mation from the collaboration graph) is closer to the real-world perception of a 

researcher’s significance than the standard PageRank but is still at best as good as 

common (and far less computationally expensive) first-order methods based on 

simple citation counts. 

The above tables may also be used for a prediction of future ACM SIG-

MOD E. F. Codd Innovations Award winners if we choose scientists active in the 

database field. Regarding the fact that citation and in-degree rankings have the 

largest overlap with the true list of awardees (see Table 2) and after consulting 

Scopus about the fields of interest of the top-ranked authors in Table 4 (Online 

Resource 1), Ramakrishnan Srikant  and Christos Faloutsos seem to be the hot 

candidates. Scott Shenker, Sally Floyd, and Van Jacobson appear almost always 

among the top researchers in each ranking but as their interests do not focus on 

databases, they should be considered as candidates for other awards. 

Conclusions 

Current tools for analyzing social networks in the scientific community concen-

trate mainly on established citation indices such as ISI Web of Science or Scopus. 

These databases were originally not conceived to allow for a direct machine 

processing and, therefore, information scientists treat them manually or semi-

manually. This approach results in very time-consuming analyses of relatively 

little data. On the other hand, the data from open access Web services such as Ci-

teSeer are still rather underestimated as they are computer-generated and hence 

error-prone. However, their potential is great as their accuracy and completeness 

get higher and the general need for large and up-to-date bibliographic and citation 

databases grows.  

In this paper, we present the results of our experiments with CiteSeer data. 

We show that sufficiently large citation and collaboration graphs for publications 

and authors can be created from these data.  We analyze the citation graph of pub-
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lication authors and present twelve rankings of the most influential researchers. In 

addition to common ranking methods such as counting citations or in-degree, we 

apply variations of the standard PageRank formula that combine information from 

both the citation and collaboration graphs. With respect to CiteSeer’s drawbacks 

such as missing or wrong data, we argue that author rankings based on CiteSeer 

are realistic enough (by comparing them with true award recipients) so that they 

might be carefully used along with other data sources for the prediction of future 

computer science award winners. We conclude that CiteSeer, due to its free avail-

ability and well-structured large-scale data, is very well suited for citation analys-

es and testing of bibliometric methods despite its inherent errors. This work is the 

most comprehensive analysis of author citations based on CiteSeer data that we 

are aware of. 

The remaining research issues are particularly the reliability of CiteSeer 

data, a more in-depth analysis of the CiteSeer collaboration graph, and differences 

between CiteSeer and CiteSeer
X
. These and other topics including retrieving ad-

dresses, affiliations, and countries from CiteSeer shall be discussed in future stu-

dies. 
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