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ABSTRACT
Background: Just-In-Time (JIT) compilation plays a critical role in optimizing the performance of modern virtual machines
(VMs). While the architecture of VMs–register-based or stack-based–has long been a subject of debate, empirical analysis focusing
on JIT compilation performance is relatively sparse.
Objective: In this study, we aim to answer the question: “Register-based and stack-based virtual machines: which perform better
in JIT compilation scenarios?”
Methods: We explore this through a comprehensive set of benchmarks measuring execution speed. To achieve this, we developed
identical test cases in languages that support both types of VM architectures and ran these tests under controlled conditions. The
performance metrics were captured and analyzed for JIT compilation, including initial interpretation, bytecode translation, and
optimized code execution.
Results: Our findings suggest that register-based VMs generally outperform stack-based VMs in terms of execution speed. More-
over, the performance gap between the two architectures in mixed execution mode, which essentially copies characteristics of the
underlying virtual machine, suggests that making the right choice of VM architecture is still important.
Conclusion: This study provides developers, researchers, and system architects with actionable insights into the performance
trade-offs associated with each VM architecture in JIT-compiled environments. The findings can guide the design decisions in the
development of new virtual machines and JIT compilation strategies.

1 | Introduction

Virtual Machines (VMs) have been integral to computing for
decades, providing an abstraction layer that allows programs
to operate in a manner that’s independent of the underlying
hardware. Historically, there have been two predominant archi-
tectures for these VMs: register-based [1] and stack-based [2].
Register-based VMs utilize a set of registers to hold data dur-
ing operations. Instructions in such VMs typically specify the
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registers they operate on. This architecture, prevalent in phys-
ical hardware CPUs, naturally extended to virtual machines,
mirroring the operational dynamics of physical computing envi-
ronments. Programming languages such as Lua [3] and PHP [4]
utilize register-based VMs.

Stack-based VMs, on the other hand, rely on a stack to hold data.
Operations are performed at the top of the stack, and instructions
push or pop data from it. The Java Virtual Machine (JVM), for
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instance, is one of the most renowned instances of a stack-based
VM [5].

Since the inception of this dichotomy, an important question
has arisen: Which approach is more efficient [6–8]? It has
been observed that register-based machines spend less time in
overall execution, but this comes at the cost of less compact
code size. On the other hand, stack machines might require
more VM instructions for specific tasks, each often associated
with an unpredictable indirect branch during VM instruction
dispatch [6, 8].

Several researchers have conducted in-depth studies compar-
ing architectures to support these claims, providing examples
where one may outperform the other [6, 8]. However, except
for a few speculations presented in Virtual Machine Showdown:
Stack Versus Registers [8] and a severely flawed indirect compar-
ison in Evaluation of Android Dalvik Virtual Machine [9] a role
of Just-In-Time (JIT) compilation is mainly absent from these
studies.

JIT compilation involves the compilation of computer code dur-
ing a program’s execution rather than before its execution. JIT
start to be more prominent in the late 1990s, especially in efforts
to optimise Java performance [10]. In modern programming
language implementations, JIT compilation is widespread, as
demonstrated by its adoption in languages such as C Sharp, Java,
or JavaScript. The approach to JIT compilation is varied, but they
typically focus on identifying sections of a program that are exe-
cuted frequently [11].

Focusing on compiling only these specific sections makes the
compilation process faster and more suitable for runtime exe-
cution. Furthermore, the real-time data obtained from actual
execution enables JIT compilers to apply advanced optimization
techniques, including inlining and type specialization or even
deoptimization of some sections. As a result, the code produced
can be as efficient as, or in some instances even outperform, the
code produced by traditional static compilers [12].

To determine whether the inclusion of JIT significantly impacts
the choice between stack-based and register-based virtual
machines, we propose a benchmark. This benchmark will be
grounded on the implementation of two virtual machines: one
based on register architecture and the other on stack architec-
ture. For both machines, a shared JIT engine with switchable base
optimization will be implemented.

1.1 | Contributions and Organization

This article has the following contributions:

• We confirm a speed difference between register and
stack-based virtual machines as it has been stated in stud-
ies A Performance Survey on Stack-based and Register-based
Virtual Machines [6] and Virtual Machine Showdown: Stack
Versus Registers [8].

• We design a framework that allows us to compare virtual
machine architectures together with JIT compilation.

• We design benchmarks and confirm speculation [8] that
compilation time will play only a marginal role and that the
most important thing is still the cost of interpretation.

The rest of this article is organized as follows: Section 2 discusses
related work. Section 3 provides an overview of stack and register
virtual machines to help the reader better understand their archi-
tectural implications in JIT compilation. Section 4 presents pos-
sible approaches to JIT compilation and discusses their impact
on virtual machines. Section 5 introduces our approach to the
problem. Section 6 evaluates the basic performance of both
implementations. Finally, we conclude the article in Section 7.

2 | Related Work

The effectiveness of both approaches has been a hot topic
since the inception of virtual machine types. Initially, this topic
was closely associated with the physical architecture of com-
puters. One of the first studies in this area, The Case Against
Stack-Oriented Instruction Sets [1], challenges the idea that
stack-based code is more compact and requires decoding fewer
instructions. The author presents a few small examples to support
their claim, but these are not comprehensive enough to draw gen-
eral conclusions. A similar critique applies to the direct response
titled Reply to The Case Against Stack-Oriented Instruction Sets
[13]. This article correctly addresses the issue of trivial examples
in the original article but fails to provide any complex examples
or statistics to support its arguments. The debate continues in
the article The Evaluation of Expression in a Storage-to-Storage
Architecture [14], where the author tries to support their position
with data, but again, only using limited examples involving a few
operations.

The abandonment of hardware stack machines in the 1980s and
the subsequent increase in machine performance marked a shift
in the debate toward efficient software implementation. Dur-
ing this time, languages like BCPL and Pascal emerged, primar-
ily implemented within virtual machine [15]. Virtual machines
that executed both of these languages were stack-based. Efforts
to increase efficiency included initiatives to accelerate the dis-
patch loop [16], using super instructions, and implementing
compile-time optimization [10]. In the 1990s, Java emerged.
As previously mentioned, Java utilizes a stack-based virtual
machine.

In contrast, the Inferno virtual machine represents a register-
based approach, with its design choices elaborated in The Design
of the Inferno Virtual Machine [17]. This article details the archi-
tecture of the DIS virtual machine, offering insights into the ratio-
nale behind its specific design elements. The DIS virtual machine
is a register-based machine that was part of the Inferno oper-
ating system. They conclude that generating native code from
register-based bytecode would be easier. However, this claim is
not substantiated by any data or other studies.

Comprehensive studies comparing the two types of virtual stacks
appeared after 2000, primarily in the papers A Performance
Survey on Stack-based and Register-based Virtual Machines [6]
and Virtual Machine Showdown: Stack Versus Registers [8], which
will be discussed in more detail later. It is worth mentioning at
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this point that neither of these studies delves into the role of JIT
compilation in detail. The first mentioned [6] completely ignores
JIT compilation, while the second [8] briefly touches upon it and
offers some speculation, which we will explore in more detail
later.

Outside the academic environment, a decision was made to
use a new virtual machine, Parrot VM, for Perl 6, opting for a
register-based architecture. This decision was not supported by
any data, a situation that was practically mirrored in the case
of a new virtual machine for Lua [3]. Another notable decision
in this field was implementing the Dalvik virtual machine for
the Android platform. This virtual machine was developed as an
alternative to the Java virtual machine, with the key difference
being its register-based design [9]. Consequently, the compilation
process was extended by an additional step—conversion to the
register-based variant. The performance of this machine in direct
comparison with Java was evaluated in the paper Evaluation of
Android Dalvik Virtual Machine [9]. The authors also discuss the
influence of the JIT engine, albeit with some acknowledged lim-
itations that may have biassed the results of the comparison [9].

One of the latest contributions to the debate is WebAssembly.
Unlike a virtual machine or a programming language, WebAssem-
bly is a standardized, portable binary-code format for executable
programs [18]. In this case, a stack-based format was chosen. The
choice of this format is not backed by any statistical data but is
justified primarily by the claim that it facilitates efficient binary
coding and verification [19].

2.1 | A Performance Survey on Stack-Based
and Register-Based Virtual Machines

In the article [6] the authors built two versions of virtual
machines: Inertia, a register-based virtual machine, and Concep-
tum, a stack-based virtual machine. During their benchmarking,
they found that Inertia is considerably more efficient in terms of
execution time and instruction dispatch compared to Conceptum.
Specifically, Inertia spends 20.39% less overall execution time and
66.42% less time in instruction dispatch than Conceptum.

Further analysis of the data supports the hypothesis about the
performance differences between register-based and stack-based
virtual machines. Register-based machines, like Inertia, typi-
cally execute far fewer dispatches than stack-based machines.
However, stack-based machines occasionally outperform their
register-based counterparts in benchmarks involving heavy arith-
metic operations, owing to their fewer fetches per dispatch. In
such scenarios, Conceptum’s stack-based design allows for faster
execution of arithmetic operations, as it requires fewer operands.
Despite this, Inertia excels in recursion and memory operations.
Unfortunately, the authors did not take into account any form of
JIT compilation.

2.2 | Virtual Machine Showdown: Stack Versus
Registers

In the article [8] the authors compare the performance of stack
and register virtual machine implementations. Building upon

previous work described in The Case for Virtual Register Machines
[20], the authors quantified the number of instructions for both
architectures using a basic translation scheme. The current arti-
cle introduces a more sophisticated translation and optimization
method for converting stack VM code to register VM code, aim-
ing to provide a more precise assessment of the potential of virtual
register machine architectures.

Experimental results are presented for a fully-featured regis-
ter Java Virtual Machine (JVM) generated with the help of
the wmgen [21] interpreter generator, ensuring that both ver-
sions of the interpreter reuse the same base codes. The bench-
mark also considers multiple types of dispatch methods, namely
inline-threaded [22], direct-threaded, token-threaded, and switch
dispatches. The authors mention that as the cost of dispatches
decreases, any benefit from using a register VM instead of a stack
VM diminishes.

Key findings include that a register architecture requires, on aver-
age, 46% fewer executed VM instructions than a stack archi-
tecture, though the register code is 26% larger. This increase
in code size results in only a minor additional CPU load per
eliminated VM instruction. Performance tests on an x86-64
machine show that the register machine averages 1.48 times
faster using a C switch statement for dispatch and 1.15 times
faster than a stack JVM, even with more efficient inline-threaded
dispatch.

At the end of the article, the authors offer some speculations, such
as that translation from stack-based will be easier because stack
variants are closer to the traditional Intermediate Representation
(IR) used in compilers. However, this does not correspond to the
current common IR in LLVM and GCC compilers, both of which
use a register-based IR [23, 24]. The second speculation is more
interesting from our perspective–it suggests that only a tiny part
of the compilation time will be involved. The last speculation is
that it will play a much more significant role in the interpreta-
tion’s cost.

2.3 | Evaluation of Android Dalvik Virtual
Machine

The primary motivation behind this article [9] is to compare the
Android Dalvik Virtual Machine (DVM) with Java Micro Edi-
tion (JVME), as represented by the phoneMe reference imple-
mentation, on an experimental tablet board using an embedded
Java benchmark. In stark difference to the previous articles, a
JIT compilation is taken into account. The comparison itself has
been made on the experimental tablet board and under separate
Android and Linux installations.

The authors repeatedly acknowledge that their selected approach
can be problematic; for example, they use different versions of the
Linux kernel and the implementation of the C standard library
(libc). This decision can lead to varying performance at the level
of the operating system itself or system libraries and to distor-
tion of the results. Another problematic area is the implementa-
tion of the virtual machine’s core libraries, which varied in their
approach across both virtual machines, even for the same func-
tions. Some of them use native methods, some use the Java Native
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Interface, and others are programmed directly in Java. This can
also contribute to potential distortion [25].

Even the comparison of the JIT engine itself cannot be consid-
ered direct as JVME generates A32 instruction set. In contrast, the
DVM generates T32 instruction set—a different variant of ARM
assembly. The authors attempt to take this into account by con-
sidering the fixed penalty of 6% against T32 instruction set. The
last difference is the type of JIT compiler: trace in the case of the
DVM and method in the case of JVME. The authors also acknowl-
edge this.

The authors use two DVM implementations in assembly and C
during the comparison. They find that the assembly version of
the DVM interpreter is 60% faster than the JVM interpreter, yet
the C version is only 6% faster. This can cast doubt on the find-
ings of [8] because this difference is significantly lower. They also
examine the size of the generated code, and it is interesting to
find that the whole comparison is distorted by the existence of
super instructions in the case of DVM. Super instructions repre-
sent a set of small operations in one single operation, which can
lead to increased performance. If we exclude methods contain-
ing these super instructions, the DVM bytecode size becomes 33%
larger than that of the JVM.

The performance measurement with JIT enabled shows a clear
superiority of the JVM, as it exhibits an 11.7-fold speedup. In com-
parison, the DVM shows only a 4.0-fold speedup, achieving only
one-third of the JVM’s performance. According to the authors,
this is a significant difference, even when considering the 6%
performance difference between the A32 and the T32 code. The
authors proceed to discuss the reasons why the difference is so
significant. One reason is the small trace size, which limits effi-
cient code generation, resulting in lower-quality code. In fact,
they found that a trace includes only three bytecode instructions,
on average.

Although [9] yields interesting results, it is, unfortunately, impos-
sible to overlook several problems in the methodology that can
lead to potential biases and invalidate the study.

3 | Stack and Register Virtual Machines

Stack-based architectures generally make implementation easier
by automatically managing the locations of operands. All calcu-
lations are performed on the stack, requiring that every value be
placed into the stack before any mathematical operations are con-
ducted [2]. If we take into account a simple mathematical expres-
sion such as: 𝑎 = 𝑏 × 𝑐, typical pseudo-bytecode for stack-based
virtual machines, based on JVM bytecode might look like:

iload 2
iload 3
imul
istore 1

In this example, we load two variables 2 and 3, representing val-
ues 𝑎 and 𝑏, into the stack and do the multiplication operation.
The result of this operation will be available in the stack, so we
need another extra instruction to put this value into variable 1.

Both of the operands used for multiplication have been destroyed
during the operation, and thus, we cannot reuse them.

On the other hand, register-based architectures expect explicit
operand addressing. An illustrative pseudo-bytecode, similar to
the Lua programing language bytecode format, is:

imul r1, r2, r3

In this case, just one instruction is needed as this instruction will
directly fetch the data from the registers r2 and r3 and store
them into target register r1. This operation does not destroy val-
ues in registers r2 or r3.

The main difference between both of them is the number of
instructions that need to be used to perform the multiplication
operation. We can observe a need for more instruction in the case
of stack-based machines. However, instructions themselves tend
to be simpler—as they usually need just one operand. We can also
easily calculate the liveness of both input operands. If we focus
more on the execution cost, it can be divided into three distinct
parts:

• Instruction Dispatch

• Operand Access

• Computation

The first component, Instruction Dispatch, involves retrieving
the upcoming VM instruction from memory and then directing
the flow to the appropriate interpreter code segment responsible
for executing that VM instruction. As we have seen, many tasks
can be described with fewer register machine instructions than
stack-based machines.

Consequently, virtual register machines offer significant poten-
tial to reduce the number of instruction dispatches. In the C
language, dispatch is primarily implemented using a compre-
hensive switch statement, with each case addressing a unique
opcode within the VM instruction set. While this dispatch mech-
anism is straightforward, it can be inefficient, especially when
branch prediction is suboptimal. For this reason, an alternative
such as threaded dispatch has been proposed and used [16]. How-
ever, branch prediction has been significantly improved in the
last three generations of CPU, and it should not pose any extra
cost [26].

As the cost associated with dispatches decreases, the benefits of
using a register VM over a stack VM become less evident. How-
ever, switch-based and basic threaded dispatch remain the dom-
inant interpreter strategies. The switch remains the sole viable
option when adherence to ANSI C is crucial.

In the context of operand access during VM instruction
execution, it is important to note that a substantial part of the pro-
cessing cost is attributed to operand retrieval. Unlike stack code,
where the operand’s location depends on the stack pointer’s posi-
tion, register code clearly specifies the operand location. Conse-
quently, register instructions are often lengthier than their stack
counterparts, leading to a more cumbersome register code and
requiring increased memory accesses throughout execution [6].
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Computation is the final component influencing VM
performance. Regardless of the representation, basic compu-
tation is essential for operating on a virtual machine and cannot
be entirely eliminated. However, it often constitutes the smallest
portion of the overall cost [6, 8].

4 | JIT and It’s Compilation Methods

The primary motivation for JIT stems from the fact that pro-
gramming languages often possess features such as late bind-
ing, dynamic loading, and various forms of polymorphism that
can hinder the generation of high-quality code at compile time.
Ahead-of-Time (AOT) compilers traditionally base their decisions
on the program’s source code, producing optimized code effi-
ciently for languages with strictly defined data types and control
flow. However, features like dynamic typing, certain polymor-
phisms, and an open class structure can prevent compilers from
having vital information until runtime [11].

JIT represents a form of runtime optimization, and a crucial
aspect of these optimizations is the trade-off they present between
compile time and code quality. The use of a JIT compiler hinges
on finding a balance between pre-compilation efforts, JIT pro-
cessing, and the optimization achieved through JIT compilation.
Ideally, a runtime compiler should optimize more cycles than it
consumes.

When considering a runtime system, deciding the frequency and
focus of JIT invocation becomes important for performance. An
implementation must choose between:

• converting Virtual Machine code to native code before exe-
cution (AOT) or

• invoking the JIT only for frequently executed segments.

Runtime optimizers operate at varying granularities. This design
choice significantly influences overall effectiveness, dictating the
optimizations the JIT can apply and the code fragment sizes it
optimizes. As has been already mentioned, we can divide JIT
approaches into three groups: trace-based, method-based, and
combined approach [11].

4.1 | Trace-Based

A trace optimizer monitors runtime branches and jumps to iden-
tify frequently executed sequences, known as hot traces. When
these traces are executed beyond a predefined threshold, the
JIT compiler is activated to produce an optimized native code
representation. This optimization not only encompasses local
adjustments but also broader, regional enhancements, which can
be viewed as interprocedural in the context of an AOT com-
piler. Such optimization is essential as a runtime trace can often
include calls and returns [27, 28].

4.2 | Method-Based

In the case of method JIT, a method optimizer identifies pro-
cedures consuming substantial portions of the overall running

time by examining specific counters. When a method is suitable
for further optimization, the JIT compiler is invoked to generate
its optimized native code. This comprehensive approach allows
for optimizations, including code motion, regional instruction
scheduling, dead-code removal, and strength reduction. Addi-
tionally, some optimizers facilitate inline substitution, enabling
them to incorporate frequently executed code segments directly
into the hot method or, in cases where most calls to a hot method
arise from a singular call site, to inline the callee into the caller.

In essence, the method JIT compiler operates analogously to a
regular compiler system. It processes the Virtual Machine (VM)
Intermediate Representation (IR), translating it into its own vari-
ant of IR. After this transformation, the JIT applies multiple opti-
mization passes on the IR. Finally, it produces native code, execut-
ing tasks such as instruction selection, scheduling, and register
allocation.

4.3 | Combined Approach

It seems natural to combine these approaches—we will call
the result approach combined. However, integrating these two
approaches is not straightforward due to challenges like the need
for multiple compilers, handling interactions between fragments
compiled with entirely different methods, and choosing the right
strategy. A combination of these approaches can be found in the
HipHop Virtual Machine [4] in the form of region-based com-
pilation or experimental meta-tracing JIT compiler framework
BacCaml [11].

4.4 | Selecting a Proper Optimization Target

Regardless of the selected approach, a pivotal role of the system is
to ascertain which methods necessitate compilation. Crafting an
efficient strategy is essential, especially when it concerns gath-
ering profile information to assist in these decisions. All previous
approaches benefit from doing JIT for chunks of code that occupy
a significant portion of execution time. Such methods can be
identified by evaluating the frequency of their calls or the number
of iterations in their loops. Data is collected through the instru-
mented Virtual Machine (VM) Code or the VM-code engine to
better understand a method’s efficiency. In the case of the instru-
mented VM Code, profile counters are both incremented and
evaluated.

5 | Our Approach

To ensure a proper comparison without any potential inter-
ferences or differences in the implementation of both virtual
machines, we will build both virtual machines from the ground
up. The same applies to the JIT engine.

This section outlines the design and architectural decisions
for the Nozomi virtual machine (Nozomi) and the JIT engine
Zero-kei. Both will be used to benchmark the speed differences
between stack and register architectures.

5.1 | Nozomi Virtual Machine Architecture

Nozomi operates as a virtual machine in two distinct modes:
stack and register. Designed explicitly for benchmarking, its dual
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modes and shared code eliminate potential discrepancies. The
switch between these modes occurs during compilation, ensur-
ing that neither mode incurs performance costs on behalf of the
other. Nozomi is built in Rust edition 2021, and in both modes,
the machine employs the Rust match construct, analogous to the
switch statement in C. This choice stems from the fact that while
switch dispatch might not be the fastest method, it remains widely
adopted. Given its consistent use in both modes, it should not dis-
tort the results.

Both modes in Nozomi support fundamental mathematical oper-
ations such as addition, subtraction, multiplication, and division.
Other supported functionalities include function calls and recur-
sion. In terms of data types, the virtual machine supports primi-
tive data types such as integer and float.

1 .function static int32 factorial(int32) {
2 .code {
3 RECV r1
4 IS\_SMALLER r1, 2, r2
5 JMPNC r2, label:RECURSION
6 RET 1
7 RECURSION: SUB r3, r1, 1
8 SEND\_VAR r3
9 FCALL "factorial", r4

10 MUL r5, r1, r4
11 RET r5
12 }
13 }
14

15 .function static int32 main(int32) {
16 .code {
17 ASSIGN 5, r1
18 SEND\_VAR r1
19 FCALL "factorial", r2
20 ECHO r2
21 RET r2
22 }
23 }

LISTING 1 | Factorial implementation in register version

Irrespective of its operational mode, the virtual machine inter-
prets an assembler program defined in a text file. This file is
parsed into bytecode, after which the virtual machine searches
for a bytecode function labeled main(). If found, this bytecode
function is executed, returning an execution result structure
containing the value from the bytecode main() function. In an
interpreter setup, the bytecode is perpetually interpreted in a con-
tinuous loop using the match construct in Rust. For this process, a
variable symbolizing the instruction pointer is deployed. Depend-
ing on this variable’s value, an instruction is chosen, and through
a match, an appropriate handler for its execution is selected.

The method of passing parameters during execution can signif-
icantly impact the speed of the virtual machine when calling
functions. When passing parameters during a function call, the
register version of the virtual machine uses a stack. Parameters
are placed on a dedicated stack with the opcode SEND_VAR. If
the virtual machine encounters the opcode FCALL, which rep-
resents the calling of the function, this stack is passed into the
function. Later, inside the function, the values of these param-
eters are obtained using the RECV opcode. In contrast, func-
tion calling in a stack-based machine revolves around removing

a fixed number of parameters from the stack. Inside the called
function, parameters are automatically placed into individual
variable slots; they are not immediately put onto the stack.

1 .function static int32 factorial(int32) {
2 .code {
3 LOAD 0
4 PUSH 2
5 IS\_SMALLER
6 JMPNC label:RECURSION
7 PUSH 1
8 RET
9 RECURSION: LOAD 0

10 PUSH 1
11 SUB
12 FCALL "factorial"
13 LOAD 0
14 MUL
15 RET
16 }
17 }
18

19 .function static int32 main(int32) {
20 .code {
21 PUSH 5
22 FCALL "factorial"
23 STORE 1
24 LOAD 1
25 ECHO
26 LOAD 1
27 RET
28 }
29 }

LISTING 2 | Factorial implementation in stack version

5.2 | Zero-kei JIT Engine

The Zero-kei JIT engine is a method-based JIT engine, and,
by design, it resembles a full-fledged compiler to a degree. It
has its own register-based intermediate representation known
as the Low-Level Intermediate Representation (LLIR). This rep-
resentation is more low-level than a typical virtual machine,
particularly when compared to Nozomi, but it still operates with
useful abstractions, such as virtual registers. This allows for
better abstraction of the target Instruction Set Architecture (ISA).
Furthermore, LLIR is designed with optimization facilitation in
mind. Currently, Zero-kei supports only the x86-64 ISA. However,
this limitation is not a concern for our study, as the comparison
will be made using the same ISA.

The JIT engine is integrated into both versions of the virtual
machine. Virtual machines will count the number of executions
of called functions, and upon reaching a specific threshold, the
function will be compiled by the JIT engine and executed.

Additionally, we note that Zero-kei JIT compilation does not
occur in a background thread. Compilation is performed syn-
chronously at the point when a function reaches the invocation
threshold. Consequently, during the execution phase, there is no
ongoing background JIT activity that could interfere with bench-
mark timing or contribute to additional system noise.
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Like regular compiler backends, method JIT compilers also have
the same architectural components, including instruction selec-
tion, scheduling, and register allocation [29]. All of these ele-
ments interplay and significantly influence code quality. For this
reason, we will now briefly discuss the implementation of these
parts in Zero-kei.

5.2.1 | Instruction Selection

Instruction selection in compilers translates an intermediate rep-
resentation (IR) into the target processor’s ISA using techniques
like peephole optimization or tree-pattern matching. The instruc-
tion selector, operating at compile time, transforms the IR into
target machine code, yet challenges arise from the diverse ways
ISAs can implement IR constructs. Zero-kei employs peephole
optimization as its IR takes the form of a flat assembler, which
stands to benefit from this approach. We believe that a set of com-
mon peephole optimizations will positively affect Zero-kei’s speed,
especially in the stack-based machine mode.

Peephole optimization involves a sliding window or peephole that
moves over the code. At each stage, the optimizer inspects the
operations within this window, searching for recognizable pat-
terns that can be enhanced. Upon identifying a pattern, the code
is rewritten to feature a more efficient sequence of instructions.
The efficiency of these optimizers is attributed to their restricted
pattern sets and confined viewing window [30].

A typical example of such a pattern is a store operation fol-
lowed immediately by a load operation from the same location.
Such inefficiencies often arise from sequential translations or
other optimization techniques like dead-code elimination or con-
stant folding. A peephole instruction selector divides the selec-
tion process into three main tasks: expansion, simplification, and
matching [31]. The expander converts the IR into a sequence of
Low-Level IR (LLIR) operations that encapsulate all the instruc-
tion actions. Zero-kei features two expanders: one expecting
stack-based code and another for register code. The functionality
of the stack-based code expander is crucial, which we will discuss
in detail in a separate part.

After the expander, the matcher assesses the refined LLIR against
a library of patterns, pinpointing the pattern that most accurately
represents all the effects within select LLIR instruction. All gen-
erated code relies on virtual registers rather than physical ones
and must undergo register allocation.

5.2.2 | Stack to Register Expander

During the process of stack-to-register expansion, we will lever-
age the fact that the height and contents of the VM operand
stack are always known. This allows for a straightforward
mapping from stack locations to register numbers, as every
value on the operand stack essentially functions as a tem-
porary, short-lived variable. In contrast, local variables are
long-lived and remain active for the duration of the method
execution.

TABLE 1 | Straightforward expansion.

Stack-based Register-based

load 2 mov r2, r5
load 3 mov r3, r6
mul mul r7, r5, r6
store 1 mov r7, r1

TABLE 2 | Bytecode expansion in Zero-kei.

Stack-based Register-based

load 2 (ignored)
load 3 (ignored)
mul mul r4, r2, r3
store 1 mov r4, r1

Because of this, many stack-based instructions can be converted
into equivalent register-based virtual machine instructions, turn-
ing implicit operands into explicit operand registers. However,
there are certain exceptions associated with operations on the
stack itself:

• Instructions that load a local variable to the operand stack or
store data from it become move instructions or assign in
the case of Zero-kei IR.

• Instructions that pop the operand stack, namely pop and
pop2, are completely ignored.

• Instructions like dup and dup2 that handle the stack turns
into particular “move” sequences based on the operand
stack’s current state.

Table 1 provides an illustrative example of the bytecode transla-
tion process. Consider a simple program that wants to multiply
two values, which can be described by the equation 𝑎 = 𝑏 × 𝑐.
Typically, the first operand within an instruction serves as the
destination register. In this case, the bytecode’s specific task is to
multiply two integers from two separate local variables and then
save the result into a different local variable.

As shown in Table 1, the instruction expansion, by design, will
produce many extra instructions. These can be viewed as left-
overs from the expansion process. Such unnecessary instructions
can adversely affect execution performance, especially when the
most efficient version of the code would simply be: mul r1,
r2, r3.

This straightforward approach has been slightly modified in the
case of Zero-kei stack to IR expansion, incorporating an automatic
collapse of load instructions during the expansion process if the
next operation actively uses both of these values. Thanks to this
and additional peephole optimization, these superfluous instruc-
tions will be effectively eliminated (Table 2).
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5.2.3 | Impact of Expander

As discussed in the previous section, stack-based bytecode
translation requires an explicit expansion step that converts
operand-stack operations into temporary virtual registers. This
introduces small, but measurable translation-time overhead,
approximately 1.58%. Conversely, register-based bytecode inher-
ently provides explicit operands, lowering translation overhead,
typically below 0.73%, during LLIR construction. The absolute
difference of 0.85% indicates that the expander’s cost is negligible
in practice, as this is a one-time operation.

We explicitly distinguish between the costs incurred during IR
construction, translation overhead, and those occurring during
optimization. Although both bytecode variants undergo iden-
tical local optimization phases once in LLIR form, the initial
stack-to-register expansion adds instructions that increase the IR
construction overhead. While downstream optimizations often
remove redundant instructions, patterns specific to stack oper-
ations, such as duplicate, may produce IR sequences less con-
ducive to immediate simplification, resulting in slight perfor-
mance inefficiencies that persist after optimization.

5.2.4 | LLIR Design Considerations and SSA Form

Zero-kei internally uses LLIR as its intermediate representation.
Notably, LLIR is not in static single assignment (SSA) form and
our compilation pipeline does not include an SSA conversion at
any stage. The absence of an SSA-based representation in LLIR
limits the applicability and effectiveness of optimizations such as
aggressive dead code elimination and advanced value numbering.
Consequently, compared to an SSA-based IR, our LLIR potentially
sacrifices some optimization effectiveness.

Considering these trade-offs, designing bytecode closer to SSA
form could potentially reduce translation overhead and improve
optimization, allowing some optimization and transformation
passes to be combined [32]. However, SSA form is inherently
less suitable for direct interpretation, as it can slow down inter-
preters due to the runtime overhead of variable versioning, the
complexity of handling 𝜙-functions, the interpreter’s preference
for simpler control flow, and the increased instruction count
typically associated with SSA. A practical evaluation [33] sup-
ports this claim. This finding is particularly significant, given
that JIT-compiled code often runs alongside interpreted code
in mixed-execution environments. SSA-based bytecode may add
complexity or inefficiencies during interpretation, which can
hurt overall performance. While currently beyond the scope of
our study, exploring a balanced approach that uses SSA-based
bytecode primarily for JIT compilation, while maintaining effi-
cient interpretation, appears to be a promising direction for
future work.

More advanced instruction selection, such as SSA-based lower-
ing or global pattern matching, could reduce stack-to-register
overhead. Early value numbering and better register coalesc-
ing could also minimize redundant moves. These optimizations
would likely narrow the performance gap between stack-based
and register-based virtual machines under JIT and AOT modes.
However, the core advantage of register-based architectures, due

to lower dispatch frequency, explicit operand handling, and align-
ment with modern CPUs, would remain. Full validation of this
hypothesis with an SSA-enabled JIT pipeline and stronger back-
end optimization is an important goal for future work.

5.2.5 | Instruction Scheduling

Instruction scheduling is a process that reorders operations in
a procedure to optimize execution time, assuming the code is
already optimized. This scheduling is crucial for processors with
pipelined execution, as the sequence of operations can directly
influence performance [34]. Zero-kei does not utilize any form
of instruction scheduling. However, this does not impact the
benchmarks, as instruction scheduling is skipped for both virtual
machine execution modes.

5.2.6 | Register Allocation

Effective utilization of processor resources, particularly regis-
ters, is vital for the performance of compiled code, as registers
provide quicker access than memory. The challenges associated
with register allocation and assignment, in their most expansive
form, are NP-complete [35]. Due to this complexity, strategies are
required to minimize unnecessary data transfers between regis-
ters and memory. Among the various strategies for data spilling,
graph-colouring [35] and linear scan [36] are commonly used. The
latter is especially efficient for JIT compilers [37]. As previously
highlighted, the speed of JIT compilation is dependent on the effi-
ciency of its components; hence, Zero-kei employs the linear scan
algorithm.

6 | Evaluation

In this section, we evaluate the basic performance of the Nozomi
virtual machine in conjunction with the Zero-kei JIT engine.
First, we introduce our setup and describe how we gathered data
from microbenchmark programs. Next, we present the evalua-
tion results of both the VM and JIT across various settings using
microbenchmark programs.

6.1 | Setup

6.1.1 | Implementation

We implemented a set of benchmark programs directly in
both versions of IR code. Each program has two identical ver-
sions, one stack-based variant and the second register-based.
We selected the following set of problems: factorial (recursive),
factorial (iterative), fibonacci (recursive), fibonacci (iterative),
pi-approximation, collatz conjecture, Euler’s totient function, fac-
torize, integer square root and perfect number.

Every problem is chosen for benchmarking due to its computa-
tional characteristics, which can help in evaluating the perfor-
mance differences between register-based and stack-based virtual
machines, along with JIT engine capabilities. The factorial (recur-
sive) involves calculating the product of all positive integers up
to a given number using a recursive method, testing the VM’s
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ability to handle recursive function calls and stack management
efficiently. In contrast, the factorial (iterative) calculates the same
factorial value but utilizes an iterative approach, highlighting the
VM’s efficiency in loop and arithmetic operation management.

Similarly, the fibonacci (recursive) computes a fibonacci num-
ber using recursion, which is crucial for assessing the VM’s per-
formance in managing recursive calls and the associated over-
head. The fibonacci (iterative) emphasizes loop efficiency and
arithmetic operations, offering a point of comparison to its recur-
sive counterpart.

Pi-approximation involves a series of arithmetic operations, test-
ing the VM’s floating-point computation efficiency and repeti-
tive arithmetic tasks. The Collatz conjecture, with its conditional
branching and arithmetic operations, examines the VM’s abil-
ity to efficiently manage dynamic and unpredictable execution
paths. Calculating euler’s totient function requires iterating over
a range of integers and evaluating the greatest common divisor,
assessing the VM’s capability in handling mathematical functions
and iteration.

Factorize implements the factorization of integers into their
prime factors. It evaluates the VM’s efficiency in executing algo-
rithms that involve division operations and conditional checks.
Problem integer square root focuses on arithmetic operations,
especially how the VM optimizes calculations involving square
roots and integer arithmetic. Finally, in the case of a perfect
number —determining whether a number is perfect involves
summing its divisors and comparing the sums, which evalu-
ates the VM’s performance in arithmetic operations, loops, and
conditionals.

All of these problems have their own driver program, which exe-
cutes the problem in a loop with a fixed count of 1000 executions
efficiently, allowing it to kick in JIT compilation after reaching a
particular compilation threshold.

1 .function static int32 main() {
2 .code {
3 ASSIGN 1, r1
4 BENCH:SEND\_VAR 15
5 FCALL "fibonacci", r2
6 INC r1
7 NEQ r1, 1000, r2
8 JMPC r2, label:BENCH
9 RET r1

10 }
11 }

LISTING 3 | Benchmarking loop for fibonacci function

While each problem in this set targets specific computational
traits relevant to virtual machine performance, they collectively
serve to isolate the costs of interpretation, operand access, and JIT
overhead. This isolation is essential for clearly attributing perfor-
mance differences to specific implementation choices and avoid-
ing extraneous interference. Nonetheless, these microbench-
marks do not necessarily mirror the complexity found in
large-scale or real-world applications. For instance, production

workloads often have complex control flow, dynamic data struc-
tures, extensive library interactions, concurrent execution con-
texts, asynchronous event handling, and external system calls.
Such complexities introduce additional layers of performance
variability that these more straightforward benchmarks do not
adequately capture.

Thus, microbenchmark results should be seen as indicative, not
definitive, of real-world performance. Larger benchmarks or full
applications introduce factors like inlining, garbage collection,
threading, memory patterns, and caching. These workloads tend
to have more varied instruction mixes and longer runtimes,
which can amplify the benefits of advanced JIT optimizations and
diminish the overhead of instruction dispatch.

6.1.2 | Methodology

The executed benchmark is based on the Rust benchmarking
tool Divan [38], as designing our own benchmarking tools would
be out of scope for this study. One of the fundamental chal-
lenges of benchmarking is that the operation could potentially
be too fast for the timer to measure accurately [39]. This is fur-
ther complicated by the fact that timer precision varies depend-
ing on the platform and operating system and can differ across
individual setups. To account for this, the timer used for mea-
suring will calculate its precision by conducting multiple timing
measurements.

Timing measurements will be conducted by utilizing the fol-
lowing algorithm: The Precision algorithm seeks the smallest
non-zero duration that the timer can reliably measure. It updates
this minimum duration based on the results of successive tim-
ing attempts. The process involves either rapid successive mea-
surements or measurements with increasing delays. A count is
maintained to determine when a consistent minimum duration
is observed, which is then considered the timer’s precision.

In improving the precision of time measurement, the benchmark-
ing tool bundles a series of iterations into a single entity, denoted
as a sample. The equation 𝑣(𝑠) is utilized to compute the required
number of iterations, or sample size, to effectively address the
issues related to the accuracy of the timer:

𝜈(𝑠) =

{
𝜈(2 × 𝑠) if 𝑡(𝑠) < 100 × 𝜏precision

𝑠 if 𝑡(𝑠) ≥ 100 × 𝜏precision
(1)

The benchmarking tool determines the final sample size by pro-
gressively doubling the number of iterations until the duration of
a sample is at least 100 times the 𝜏 precision. This adjustment is
achieved by re-timing each iteration at 𝑡(2 × 𝑠), ensuring that the
final outcome is not just based on the initial duration measure-
ment [38].

If one disregards the re-timing aspect of 𝑡(𝑠) and assumes that 𝑡(𝑠)
consistently yields a predictable value, then the calculation of 𝜈(𝑠)
can be understood as follows:

𝜈(𝑠) ≈ 2
100×𝜏precision

𝑡(𝑠) (2)
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The inspiration behind the approach of scaling sample size based
on timer precision from study Robust Benchmarking in Noisy
Environments [40]. However, the approach of the benchmarking
tool is more straightforward as we are not taking into account
timer accuracy [38].

The benchmarking tool does not depend on timer accuracy since
determining such accuracy without a more precise reference
timer is challenging. This is particularly true given that the
Instant, a primary time-measuring component in Rust, is imple-
mented using the most accurate timer available on the target plat-
form [41]. As our benchmark was executed on Linux, this boils
down to using clock_gettime (Monotonic Clock). Therefore, the
existing approach can be considered sufficiently effective for our
current needs.

The benchmarking process also takes into account overhead from
the benchmarking loop. This is done by measuring the additional
time consumed by the benchmarking loop itself, separate from
the timer’s precision. It involves repeatedly timing a set number
of operations and calculating the smallest average duration per
operation. This average represents the loop’s overhead, which is
crucial for ensuring the accuracy of performance measurements,
as it accounts for the extra time introduced by the benchmarking
process.

6.1.3 | Execution

To ensure the most accurate interpretation of the results, we
began by measuring both virtual machines without enabling the
JIT engine, evaluating both the register and stack-based vari-
ants. We conducted a sequence of tests, initially conducting
1000 warm-up executions. This was followed by a more exten-
sive phase where we executed 1000 samples, with each sam-
ple comprising 50 executions, cumulatively amounting to 50,000
iterations.

In the second measurement, we accounted for the performance
with the AOT compilation done by the JIT engine. In this mode,
the code is first compiled and then executed. Again, we carried
out 1000 samples, with each sample comprising 50 executions,
cumulatively amounting to 50,000 iterations. For the third mea-
surement, we enabled the JIT engine itself. Once more, we com-
pleted 1000 runs, dismissing the first 100 as warm-up trials.

We selected a relatively low JIT compilation threshold of 50 for
purely experimental reasons, ensuring that the JIT engine starts
promptly even with a moderate number of executions. In con-
trast, production systems often use higher thresholds to amortize
the overhead of compiling hot code paths. For example, in the
Oracle JVM with tiered compilation enabled, the default thresh-
old for compilation at tier three is 2000 executions [42]. When
tiered compilation is disabled, the threshold varies: 1000 execu-
tions in client mode and 10,000 in server mode [43]. While our
chosen threshold may emphasize JIT startup costs more than
typical in real-world applications, it enables rapid experimenta-
tion and reliably surfaces differences between register-based and
stack-based virtual machines.

Similarly, we discarded the first 100 runs of each benchmark
as a warm-up phase. This practice allows the system, including
caches, CPU frequency, and the JIT engine itself, to reach a steady
state before measurements begin. This approach is supported
by prior work [39] and is commonly adopted in benchmarking
frameworks, though the specific warm-up length may vary.

We would like to explicitly clarify that after the warm-up phase
where the first 100 iterations were discarded, the JIT compila-
tion threshold had been reached for all hot functions relevant to
the microbenchmarks. However, to maintain a clean benchmark-
ing setup, all previously compiled JIT code was discarded before
actual measurements began. Consequently, during the measured
phase, execution resumed in interpretation mode, and functions
had to re-trigger JIT compilation dynamically. Therefore, not all
functions were precompiled at the time of measurement start,
and a small portion of execution time accounts for re-compilation
overhead.

Our choice of 1000 samples was intended to balance statistical
confidence with practical runtime constraints. This number of
runs helps reduce measurement noise without excessively pro-
longing the benchmarking process. Importantly, variations in
experimental parameters should not meaningfully affect the core
outcome. These parameters include increasing the JIT threshold,
adjusting the warm-up duration, or modifying the total number
of iterations. While our parameters were pragmatically chosen to
ease experimentation and enhance clarity, the key performance
trends hold across a broad range of reasonable configurations. We
validated this by varying key parameters, such as the JIT thresh-
old and warm-up duration, and observing that relative perfor-
mance trends remained stable, indicating that our conclusions
are not sensitive to specific experimental settings.

We ran all the microbenchmarks on Ubuntu Linux with Linux
kernel version 5.10.16.3 and dedicated hardware with the fol-
lowing parameters: CPU: AMD Ryzen 5 5600X 6-Core Proces-
sor; Memory: 64GB DDR4 3200Mhz with calculated precision
of 10ns.

6.1.4 | Threats to Validity

Our evaluation has several threats to validity. First, our JIT engine
does not implement some of the more advanced and intricate
optimizations typically found in the instruction scheduling part
of the JIT engine. The absence of these optimizations might not
provide a full spectrum of performance metrics, as such opti-
mizations can play a crucial role in determining the execution
efficiency of JIT engines. Specifically, these omitted optimiza-
tions could further narrow the observed performance difference
between stack and register execution.

This suggests that our results could exhibit a more significant
difference between the two than what might be observed in
real-world scenarios where all optimizations are employed. Fur-
thermore, the decision to disregard certain optimizations might
overlook potential interaction effects between them, leading to
an incomplete representation of their collective impact. Hence,
while our findings provide valuable insights into the JIT engine’s
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performance under specific conditions, they may not comprehen-
sively capture its potential in a fully optimized environment.

Another source of potential variability lies in the underlying
hardware architecture. All our benchmarks were conducted on
an x86-64 machine, which features sophisticated out-of-order
execution and branch prediction. Performance might differ on
other platforms, especially those with in-order pipelines or dif-
ferent instruction sets, such as ARM or RISC-V . Although the
core trade-off between stack-based and register-based Virtual
Machines should remain conceptually consistent–since each
of the mentioned ISAs implements a similar set of optimiza-
tions [44, 45], disparities in areas such as cache hierarchies,
branch predictors, or microarchitectural tweaks can still result in
performance differences. Moreover, studies involving more com-
plex software [46] show that this is not merely theoretical.

To evaluate whether our findings hold across non-x86-64
architectures, an optional experiment on alternative architec-
tures could be conducted. For instance, rerunning the same
microbenchmarks on modern ARM or RISC-V systems would
help assess whether register-based virtual machines retain their
advantage. Such an experiment is outside the scope of the current
study, but we view it as an important direction for future work to
broaden the applicability of our conclusions.

6.2 | Results

The results of the comparison between individual modes: AOT,
JIT and interpretation–for the register-based virtual machine
are shown in Figure 1. To summarise the data: AOT compi-
lation is, on average, faster than JIT compilation. The specific
speed increase varies across different tasks, but overall, AOT con-
sistently shows a performance advantage. On average, AOT is
approximately 2.61 times faster than JIT.

JIT compilation outperforms interpretation in terms of speed.
The extent of this advantage also varies with different tasks,
but JIT consistently demonstrates more efficient execution com-
pared to interpretation. On average, JIT is approximately 72.7
times faster than interpretation. In conclusion, AOT compilation
emerges as the fastest method among the three, offering a signif-
icant speed advantage over both JIT compilation and interpre-
tation. The efficiency gains are task-dependent but are evident
across different scenarios.

The reasons behind these differences in performance between
AOT and JIT modes can be mainly attributed to their compi-
lation strategies. JIT compiler engages in partial and dynamic
compilation, compiling only the most frequently executed
sections of code at runtime. This approach incurs startup over-
head, particularly if the JIT engine has to monitor and instru-
ment bytecode to identify hot methods, but can produce code
highly tailored to the observed execution patterns. By contrast,
AOT compilation translates all bytecode segments ahead of time,
which can lead to longer initial compilation phases but avoids
on-the-fly instrumentation and background JIT overhead.

Figure 2 represents the same comparison but for the stack-based
version of the virtual machine. The trends are similar: AOT com-
pilation is, on average, faster than JIT compilation. On average,
AOT is approximately 2.91 times faster than JIT. The same is true
for JIT compilation; in this case, JIT is approximately 60.37 times
faster than interpretation.

Figures 3, 4, and 5 present the same comparisons in interpre-
tation, JIT, and AOT modes respectively, but with all execu-
tion times normalized to the register-based virtual machine (i.e.,
register-based = 1.0). This normalization enables clearer rela-
tive performance comparisons across the two virtual machine
designs.

FIGURE 1 | Comparison of mean execution times for register-based version.
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FIGURE 2 | Comparison of mean execution times for stack-based version.

FIGURE 3 | Interpretation mode: stack versus register (normalized to register-based).

A comparison of both virtual machines in interpretation mode is
illustrated in Figure 3. The stack-based virtual machine is slightly
faster than the register-based machine for recursion-based prob-
lems, such as factorial or Fibonacci calculations. In these cases,
the stack-based machine is 1.04 times faster. This difference is
attributed to the way parameters are passed in the register-based
implementation, which uses a dedicated stack, creating a small
overhead. However, this overhead is less significant for tasks that
do not involve numerous or recursive function calls, such as cal-
culations of pi. In these examples, the register-based machine is
1.31 times faster than the stack-based version.

Figure 4 shows a similar comparison, but both virtual machines
are now utilizing a JIT engine. The differences are now narrower

for recursion-based problems, as they are only 1.09 times faster.
For the rest of the examples, the register-based version is 1.21
times faster. Overall, it is 1.18 times faster. We can also state that
the JIT compilation mitigates a sub-optimal implementation of
parameters passing in the register version of the virtual machine.

The AOT compilation in Figure 5 mode presents a comparison
of the speed of code compiled ahead of time, thereby demonstrat-
ing the performance impact of compiled code without interpreta-
tion. The register version is marginally faster in every measured
problem, including the recursive ones. Generally, it is 1.06 times
faster. Suppose we focus only on recursive problems. It is 1.04
times faster; for other problems, it is 1.07 times faster. This can be
considered a compilation overhead for the stack version, as there
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FIGURE 4 | JIT mode: stack versus register (normalized to register-based).

is a need for an extra step to transform it into a proper IR for the
JIT compiler. This suggests plausibility for the idea proposed in
[17]—that transforming register-based code into native code will
be faster.

7 | Conclusions and Future Work

7.1 | Conclusions

We have implemented prototypes of two virtual machines: one
with a register architecture and the other with a stack architec-
ture. Additionally, we developed a JIT engine that enables the
compilation of bytecode from both virtual machines into native
code in both JIT and AOT modes. The performance of both vir-
tual machines was evaluated through synthetic experiments on
selected problems. Each problem was executed on both virtual
machines in three modes: interpretation, AOT, and JIT.

In the case of interpretation, we can confirm that register-based
virtual machines are faster than their stack-based variants, as has
been stated in [8] and [6]. In our case, the way virtual machines
implement function calling plays a role to a certain degree and
can slightly distort the results. However, even with that, we can
confirm that the register-based machines were, in our study, 1.31
times faster than their stack-based counterparts.

From the results, we can report that JIT compilation con-
sistently outperforms interpretation in both stack-based and
register-based virtual machines, indicating its efficiency in
executing tasks. In the context of JIT, the performance differences
between stack-based and register-based implementations are
more pronounced in recursion-based problems. While the
stack-based virtual machine shows a slight edge in recursion,
the register-based machine excels in tasks with fewer function
calls, such as 𝜋 calculations. However, this can be attributed to
the design choices in the register version of the virtual machine.

Specifically, the register-based machine is approximately 1.18
times faster than its stack-based counterpart in general tasks
when using a JIT engine. However, this advantage narrows in
recursion-based problems, with the stack-based machine being
only 1.09 times faster. Overall, the JIT engine enhances perfor-
mance in both types of virtual machines. However, the extent of
this improvement varies depending on the nature of the tasks and
the machine architecture. We can generalize these findings to the
conclusion that the performance curve consistently mirrors the
performance of the underlying virtual machine as determined by
its architecture.

7.2 | Future Work

7.2.1 | Implement a More Advanced JIT Engine
Optimization Techniques

Implementing a JIT engine with additional optimizations can
be more efficient compared to the naive approach we selected.
For instance, SSA enables more effective optimizations by ensur-
ing that each variable is assigned exactly once and every vari-
able is defined before it is used [47]. This can lead to significant
performance improvements during code execution. Additionally,
incorporating further optimization techniques, such as dead code
elimination or loop unrolling, can further enhance the efficiency
of the JIT engine.

7.2.2 | Use Different JIT Method

Employ a different JIT method than the currently implemented
method-based JIT engine. A method-based JIT engine compiles
methods or functions at runtime, which can be effective but may
not optimize across method boundaries. Exploring alternative
strategies, such as trace-based compilation, could offer perfor-
mance benefits, as this approach focuses on compiling frequently
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FIGURE 5 | AOT mode: stack versus register (normalized to register-based).

executed paths. This can potentially lead to more efficient execu-
tion under certain conditions [27]. The same goes for a combined
approach, represented, for example, by a region-based JIT engine.

7.2.3 | Use of Real Programs for Benchmarking

The evaluation of our JIT implementation’s performance can be
further enhanced by incorporating real-world programs instead
of relying solely on synthetic benchmarks [39]. Real-world appli-
cations offer a more accurate representation of typical usage
patterns and can expose performance bottlenecks that synthetic
benchmarks might overlook.
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