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Abstract. This paper describes a method of the efficient query evalu-
ation when uncertainty is involved in a deductive database system. A
deductive system enriched with fuzzy logic is able to serve better as a
knowledge system. Speeding up its execution makes this system practi-
cally useful.

1 Introduction

Deductive database systems make it possible to deduce new facts not contained
among the facts of the original (extensional) database. These new facts are de-
rived on the base of deduction rules (intensional database). In case that the facts
of the extensional database and/or the rules describing the intensional database
are vague, the evaluation with uncertainty has to be used. Uncertain information
may arise in databases and knowledge bases in various ways. Imprecise informa-
tion may be expressed at the attribute value level, at the level of the predicate
applicability or at the tuple (fact) level. Only the last two are considered in this
paper.

The efficiency of a query evaluation in database systems (including deduc-
tive ones) is crucial. Sophisticated query optimization techniques, such as magic
sets and counting methods, have existed in the deductive database literature
for many years [1][3] but have yet to be studied in detail for fuzzy deductive
databases. Introducing uncertainty into a deductive program enforces changes
in the program evaluation as well as changes in the common used Magic Sets
Method.

The structure of this paper is as follows. The fundamental Magic Sets Method
[3] is shortly reminded in Section 2. Section 3 defines used principles of fuzzy
logic and the evaluation of deductive programs with fuzzy logic. The goal queries
optimization is described in Section 4, where we introduce the extended Magic
Sets Method. It enables the efficient evaluation of logic programs when uncer-
tainty is involved in the deduction process. The additional supposed extensions
of the Magic Sets Method and some experimental results are summarized in the
Conclusions.



2 The Magic Sets Method

Let us shortly mention the principle of the Magic Sets Method. This method
transforms the original program into a program called magic program. The magic
program is equivalent to (gives the same result as) the original one but its evalu-
ation is usually substantially shorter. Constant arguments of the goal query are
utilized for its efficient evaluation.

Note 1. Suppose P denotes a set of rules, D denotes a set of facts belonging to
a logical program P = P ∪D.

Definition 1. Let us have two different logical programs P1 ∪ D, P2 ∪ D and
a query Q. We say that P1 and P2 are equivalent sets of rules if for every
possible extensional database D the programs P1 ∪ D and P2 ∪ D produce the
same answer to the query Q. We call the two programs equivalent as well.

The first step of the Magic Sets Method is the adornment of the original
program. It excludes all the rules of the program which do not participate in
the goal query evaluation. Only derived predicates are adorned for in fact only
they have to be computed. The adornment strings become part of the predicate
names. The so-called sideways information passing graph is created for each
rule together with the adornment. It describes the binding of arguments among
individual predicates and consequently the flow of restrictive information among
the predicates of the rule.

Definition 2. An adornment for an n-ary predicate p is a string a of length
n over the alphabet {b, f}, where b stands for bound and f stands for free. We
assume a fixed order of the arguments of the predicate. Intuitively, an adorned
occurrence of the predicate, pa, corresponds to a computation of the predicate
with some arguments bound to constants, and the other arguments being free,
where the bound arguments are those indicated by the adornment.

Example 1. Let us suppose there is some intensional predicate p having 3 ar-
guments in the head of rule r. In this case the adornment string of length 3 is
attached to the predicate p. Let us now suppose the string bff is attached to
the occurrence of the predicate p(X, Y, Z) when the rule r is adorned. Then
the resulting literal shall be p_bff(X, Y, Z). Its first argument (the variable X)
is bound and the next two arguments are free.

In the second step the so-called magic program is constructed. This step con-
sists of three parts: initialization, construction of magic rules and construction
of modified rules.

Definition 3. A magic predicate m pa is created as a projection of an orig-
inal pa predicate on its bound arguments. The number of b characters in an
adornment string (it has to be at least one) indicates the arity of the created
magic predicate. The prefix m is used to identify the magic predicate.



Example 2. Let us suppose the body of the adorned rule rad contains the adorned
predicate p_bfb(X, Y, Z). Then we can create the magical version of the pred-
icate p. The resulting magic predicate will have two arguments, since the corre-
sponding adorned string has just b characters. That’s why the resulting literal
has the form m_p_bfb(X, Z).

In the course of initialization the magic fact (seed) is created. It contains
the constants of the goal query. These constants shall be propagated through
the resulting program with the help of magic predicates. The magic predicates
are described in magic rules and determine which values shall participate in the
query evaluation. Therefore they are consequently used in the bodies of modified
original rules to restrict the number of computed tuples. We obtain the modified
rules by putting the magic predicates into the bodies of the original rules. Every
modified rule can contain a different number of magic predicates in its body.

3 The Fuzzy Logic

When working with the uncertainty model, we can use the fuzzy logic approach.
Possible ways of the uncertainty implementation are described in [5][9] in detail.
Out of various fuzzy logics, we have investigated Gödel,  Lukasiewicz and product
fuzzy logic [4][8]. We use the real number from the interval (0, 1] as a confidence
factor (CF).

Definition 4. Let p, q be predicates, u and v their argument value vectors,
u = u1, u2, . . . , uN , v = v1, v2, . . . , vM , where ui, i = 1 . . . N and vj , j = 1 . . .M
have to be instantiated with constants. The semantics of Gödel fuzzy conjunction
“∧G”, fuzzy disjunction “∨G” and fuzzy negation “notG” is as follows:

CF (p (u) ∧G q (v)) = min (CF (p (u)) , CF (q (v)))
CF (p (u) ∨G q (v)) = max (CF (p (u)) , CF (q (v)))

CF (notG p (u)) =
{

1 if CF (p (u)) = 0
0 otherwise

The following semantics of  Lukasiewicz fuzzy conjunction “∧ L”, fuzzy disjunc-
tion “∨ L” and fuzzy negation “not L” is as follows:

CF (p (u) ∧ L q (v)) = max (0, CF (p (u)) + CF (q (v))− 1)
CF (p (u) ∨ L q (v)) = min (1, CF (p (u)) + CF (q (v)))
CF (not L p (u)) = 1− CF (p (u))

The last semantics of product fuzzy conjunction “∧P”, fuzzy disjunction “∨P”
and fuzzy negation “notP” is as follows:

CF (p (u) ∧P q (v)) = CF (p (u)) ∗ CF (q (v))
CF (p (u) ∨P q (v)) = CF (p (u)) + CF (q (v))− CF (p (u)) ∗ CF (q (v))

CF (notP p (u)) =
{

1 if CF (p (u)) = 0
0 otherwise



Note 2. We will use CF (p) instead of CF (p (u)) for brevity in the equations
introduced below.

Proposition 1. If p1, p2, . . . , pn are predicates, CF (p1), CF (p2), . . . , CF (pn)
their confidence factors, then Gödel fuzzy conjunction and fuzzy disjunction of
these predicates are:

CF

(
n∧

i=1
G
pi

)
= min (CF (p1) , CF (p2) , . . . , CF (pn))

CF

(
n∨

i=1
G
pi

)
= max (CF (p1) , CF (p2) , . . . , CF (pn))

and the  Lukasiewicz connectives are introduced as:

CF

(
n∧

i=1
 L
pi

)
= max

(
0,

n∑

i=1

CF (pi)− n+ 1

)

CF

(
n∨

i=1
 L
pi

)
= min

(
1,

n∑

i=1

CF (pi)

)

The last formula represents the semantics of the product fuzzy conjunction:

CF

(
n∧

i=1
P
pi

)
=

n∏

i=1

CF (pi)

Proof. Proof is obvious. ut
Note 3. In the case of product fuzzy disjunction it is not possible to derive a
simple universal formula as in the case of the other introduced fuzzy logics. The
resulting formula should be endless.

Definition 5. Let a rule r be given with a head predicate p and body literals
L1, L2 . . . , Lm. Let v be the explicitly assigned confidence factor to r. Then
the resulting confidence factor of p w.r.t. r shall be the product of v and the
confidence of the rule r body.

Example 3. In the case of Gödel fuzzy logic, the head predicate p of a rule r has
the confidence factor value:

CF (p) = CF

(
m∧

i=1
G
Li

)
∗ v = min (CF (p1) , CF (p2) , . . . , CF (pn)) ∗ v

Definition 6. Let rules r1, r2, . . . , rm contain the predicate p in their heads.
The resulting confidence factor of the predicate p w.r.t. rules r1, r2, . . . , rm is
given by the respective fuzzy disjunction of the following values:

– confidence factor of p w.r.t. r1,



– confidence factor of p w.r.t. r2,
– . . . ,
– confidence factor of p w.r.t. rm.

Example 4. Let us suppose the predicate p has received three confidence factors
v1, v2 and v3 from three rules. If the  Lukasiewicz fuzzy logic is used the resulting
confidence factor of p is:

CF (p) = CF

(
3∨

i=1
 L
vi

)
= min (1, v1 + v2 + v3)

4 Adaptation of the Magic Sets Method

Introducing uncertainty into a program requires a modified definition of the
program equivalency. The extended Magic Sets Method has to produce a magic
program which is equivalent to the original one.

Definition 7. Let P1 and P2 be the different sets of rules. P1 and P2 are equiva-
lent, if for any extensional database D the programs P1∪D and P2∪D evaluated
by means of an arbitrary fuzzy logic produce the same answer, including uncer-
tainties of resulting tuples for any given goal query Q.

The introduction of a program equivalence for an arbitrary fuzzy logic in
Definition 7 requires to define the general fuzzy conjunction.

Definition 8. Let p, q and r be predicates, CF (p), CF (q) and CF (r) their
respective uncertainties and κ is a function of two variables defined the following
way:

1. κ is commutative
2. κ is assocoiative
3. κ (CF (p) , 0) = 0
4. κ (CF (p) , 1) = CF (p)
5. max (0, CF (p) + CF (q)− 1) ≤ κ (CF (p) , CF (q)) ≤ min (CF (p) , CF (q))

Let us we call κ is a function of arbitrary fuzzy conjunction “∧K”.

Definition 9. Let p1, p2, . . . , pn−1, pn be predicates and CF (p1), CF (p2), . . . ,
CF (pn−1), CF (pn) their uncertainties and Kn the function of an arbitrary fuzzy
conjunction of n variables “

∧
K

”. We define “
∧

K
” as follows:

CF

(
n∧

i=1
K
pi

)
= Kn (CF (p1) , CF (p2) , . . . , CF (pn−1) , CF (pn)) =

= κ (CF (p1) , κ (CF (p2) , . . . , κ (CF (pn−1) , CF (pn)) . . .))



Note 4. We do not define the general properties of fuzzy disjunction, because it
is not used in this text.

Theorem 1 (Soundness). Let r be a rule with uncertainty and m p1, m p2,
. . . , m pm be magic predicates. The modified rule rmod shall be created with the
aid of inserting of the mentioned magic predicates into the body of the rule r.
If all tuples of magic predicates m p1, m p2, . . . , m pm satisfy the condition
CF (m pj) = 1, then the rules r and rmod are equivalent (i.e. produce the same
tuples including CF coefficients) for any fuzzy logic.

Proof. The proof shows that rules r and rmod produce the same tuples (inclusive
of CF coefficients) if all tuples of the magic predicates m p1, m p2, . . . , m pm
satisfy the equality CF (m pj) = 1. Suppose the rules r and rmod have the forms:

r : p
(
X
)

: − p1

(
X1

)
, p2

(
X2

)
, . . . , pn

(
Xn

)
CF v.

rmod : p
(
X
)

: − p1

(
X1

)
, . . . , pn

(
Xn

)
,m p1

(
Xb

1

)
, . . . ,m pm

(
Xb
m

)
CF v.

The following two formulas show the evaluation of head predicates of rules r and
rmod if the Gödel fuzzy conjunction is used. The double underscored results of
both formulas indicate the Theorem validity in the case of Gödel fuzzy logic.

CF (p) = CF

(
n∧

i=1
G
pi

)
∗ v = min (CF (p1) , CF (p2) , . . . , CF (pn)) ∗ v

CF (p) = CF



(

n∧

i=1
G
pi

)
∧G

(
m∧

j=1
G
m pj

)
 ∗ v =

= min (CF (p1) , . . . , CF (pn) , CF (m p1) , . . . , CF (m pn)) ∗ v =
= min (CF (p1) , . . . , CF (pn) , 1, . . . , 1)) ∗ v =
= min (CF (p1) , CF (p2) , . . . , CF (pn)) ∗ v

If the  Lukasiewicz fuzzy conjunction is used the next formulas indicate the CF
evaluation. The double underscored results show the Theorem validity in the
case of  Lukasiewicz fuzzy logic.

CF (p) = CF

(
n∧

i=1
 L
pi

)
∗ v = max

(
0,

n∑

i=1

CF (pi)− n+ 1

)
∗ v

CF (p) = CF



(

n∧

i=1
 L
pi

)
∧ L

(
m∧

j=1
 L
m pj

)
 ∗ v =

= max


0,

n∑

i=1

CF (pi) +
m∑

j=1

CF (m pj)− (n+m) + 1


 ∗ v =



= max


0,

n∑

i=1

CF (pi) +
m∑

j=1

1− (n+m) + 1


 ∗ v =

= max

(
0,

n∑

i=1

CF (pi) +m− n−m+ 1

)
∗ v =

= max

(
0,

n∑

i=1

CF (pi)− n+ 1

)
∗ v

The next two formulas show the evaluation of the head predicates of rules r and
rmod if arbitrary fuzzy conjunction (see Definitions 8 and 9) is used. The double
underscored results of both formulas indicate the Theorem validity in the case
of arbitrary fuzzy logic.

CF (p) = CF

(
n∧

i=1
K
pi

)
∗ v = Kn (CF (p1) , CF (p2) , . . . , CF (pn)) ∗ v

CF (p) = CF



(

n∧

i=1
K
pi

)
∧K

(
m∧

j=1
K
m pj

)
 ∗ v =

= Kn+m (CF (p1) , . . . , CF (pn) , CF (m p1) , . . . , CF (m pm)) ∗ v =
= Kn+m (CF (p1) , . . . , CF (pn) , 1, . . . , 1)) ∗ v =
= κ (Kn (CF (p1) , . . . , CF (pn)) ,Km (1, . . . , 1)) ∗ v =
= κ (Kn (CF (p1) , . . . , CF (pn)) , 1) ∗ v =
= Kn (CF (p1) , CF (p2) , . . . , CF (pn)) ∗ v

The last formula summarizes the result of the whole proof.

CF (p) = CF

(
n∧

i=1
K
pi

)
∗ v = CF



(

n∧

i=1
K
pi

)
∧K

(
m∧

j=1
K
m pj

)
 ∗ v

ut
Theorem 2 (Completeness). Let r be a rule with uncertainty and m p1,
m p2, . . . , m pm be magic predicates. The modified rule rmod shall be created
by means of inserting of the mentioned magic predicates into the body of the rule
r. Then there exists such uncertainty (CF coefficient) for every magic predicate
that rules r and rmod produce the same tuples including CF coefficients for any
fuzzy logic.

Proof. The proof determines values of CF coefficients for all tuples of magic
predicates m p1, m p2, . . . , m pm when the above introduced fuzzy logics are
used. We assume that the rule r with uncertainty has the form:

p
(
X
)

: − p1

(
X1

)
, p2

(
X2

)
, . . . , pn

(
Xn

)
CF v.



The resulting value of the confidence factor for predicate p is

CF (p) = CF

(
n∧

i=1
K
pi

)
∗ v (1)

The body of the modified rule contains the predicates p1, p2, . . . , pn and may
contain the magic predicates m p1, m p2, . . . , m pm. The resulting value of the
confidence factor for the modified rule is

CF (p) = CF



(

n∧

i=1
K
pi

)
∧K

(
m∧

j=1
K
m pj

)
 ∗ v (2)

The original program and its corresponding magic program have to be equivalent
(including the resulting values of CF coefficients). This implies that the values
of equations (1) and (2) must be identical. We reach this equivalence easily for
Gödel fuzzy logic where the fuzzy conjunction is expressed as the minimum.

min (CF (p1) , CF (p2) , . . . , CF (pn)) =
= min (CF (p1) , . . . , CF (pn) , CF (m p1) , . . . , CF (m pm))

The solution of this equation is the following system of inequalities:

min (CF (p1) , CF (p2) , . . . , CF (pn)) ≤ CF (m p1) ≤ 1
min (CF (p1) , CF (p2) , . . . , CF (pn)) ≤ CF (m p2) ≤ 1

. . .

min (CF (p1) , CF (p2) , . . . , CF (pn)) ≤ CF (m pm) ≤ 1

where one solution may be e.g.: ∀i ∈ [1..m] holds CF (m pi) = 1.
We specify possible values of CF coefficients of magic predicates in the body

of the modified rule rmod if  Lukasiewicz fuzzy logic is used. The resulting CF
coefficient value of the original rule head predicate p in the case of  Lukasiewicz
fuzzy logic has the form:

CF (p) = max

(
0,

n∑

i=1

CF (pi)− n+ 1

)
∗ v (3)

and the resulting CF coefficient value of the modified rule head predicate p in
the case of  Lukasiewicz fuzzy logic has the form:

CF (p) = max


0,

n∑

i=1

CF (pi) +
m∑

j=1

CF (m pj)− n−m+ 1


 ∗ v (4)

In this case the resulting values of CF coefficients of equations (3) and (4) have to
be identical, too. The solution of identity of these equations is a simple equation
the unambiguous solution results from.



m∑

j=1

CF (m pj) = m ⇐⇒





CF (m p1) = 1
CF (m p2) = 1

. . .
CF (m pm) = 1

We assume that κ resp. Kn is an arbitrary fuzzy conjunction of two resp. n
variables (see Definitions 8 and 9). The CF coefficient of the predicate p w.r.t.
original rule r has the resulting value:

CF (p) = Kn (CF (p1) , CF (p2) , . . . , CF (pn)) ∗ v (5)

and the CF coefficient of the predicate p w.r.t. modified rule rmod of the magic
program has the resulting value:

CF (p) = Kn+m (CF (p1) , . . . , CF (pn) , CF (m p1) , . . . , CF (m pm)) ∗ v (6)

CF coefficients produced by the equations (5) and (6) must have identical values.

Kn (CF (p1) , CF (p2) , . . . , CF (pn)) =
= Kn+m (CF (p1) , . . . , CF (pn) , CF (m p1) , . . . , CF (m pm)) =
= κ (Kn (CF (p1) , . . . , CF (pn)) ,Km (CF (m p1) , . . . , CF (m pm)))

If we utilize the 4th property of an arbitrary fuzzy conjunction (see Definition 8)
we obtain a simple equation the unambiguous solution results from.

Km (CF (m p1) , . . . , CF (m pm)) = 1 ⇐⇒





CF (m p1) = 1
CF (m p2) = 1

. . .
CF (m pm) = 1

ut

Now we can look at the consequences of the proofs of Theorems 1 and 2:
When we wish to apply the Magic Sets Method together with a fuzzy logic we
must set the CF values to 1 for all tuples of magic predicates. This requirement
can be easily achieved if we use classic two-valued logic for evaluation of the
magic rules, i.e. we do not respect CF coefficients of the non-magic predicates
from the bodies of magic rules.

Theorem 3. Let P be a logic program with uncertainty and Pm be its corre-
sponding magic program. If we use classic two-valued logic for the magic rules
evaluation and any fuzzy logic for modified rules evaluation then programs P and
Pm are equivalent according to Definition 7.

Proof. The proof results from the proofs of Theorems 1 and 2. ut



5 Conclusions

The Magic Sets Method application in the environment of fuzzy logic programs
was described. A correct processing of fuzzy operation resulting in a magic pro-
gram which is equivalent to the original one was entered up. We focus on fuzzy
conjunction as it has direct influence on the evaluation of modified rules.

The theory introduced in the paper was experimentally verified on the de-
ductive database system EDD [7] and applied on the database of bank clients.
The logic program appraises clients of banks according to several aspects. These
aspects are described by the help of rules and their CFs. The program separates
clients to safe and unsafe ones. The original program consists of 62 rules and it
takes more than 30 GB of disk memory. Its running time might exceed one year.
The resulting magic program consists of 125 rules and during the evaluation the
program generates 500 KB of data into the database. The running time of this
magic program was less than 2 minutes.

The next challenging task of the Magic Sets Method extensions concerns
the negation. A program with negation has to be stratified [6]. A non-stratified
program can generate wrong results or its evaluation is infinite. The Magic Sets
Method applied to a stratified program does not always produce the stratified
resulting magic program. The general conditions for producing stratified or non-
stratified magic programs were not yet formulated.
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