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Abstract

This paper deals with automatic dialogue act (DA) recognition. Dialogue
acts are sentence-level units that represent states of a dialogue, such as ques-
tions, statements, hesitations, etc. The knowledge of dialogue act realizations
in a discourse or dialogue is part of the speech understanding and dialogue anal-
ysis process. It is of great importance for many applications: dialogue systems,
speech recognition, automatic machine translation, etc. The main goal of this
paper is to study the existing works about DA recognition and to discuss their
respective advantages and drawbacks. A major concern in the DA recognition
domain is that, although a few DA annotation schemes seem now to emerge
as standards, most of the time, these DA tag-sets have to be adapted to the
specificities of a given application, which prevents the deployment of standard-
ized DA databases and evaluation procedures. The focus of this review is put
on the various kinds of information that can be used to recognize DAs, such as
prosody, lexical, etc., and on the types of models proposed so far to capture this
information. Combining these information sources tends to appear nowadays as
a prerequisite to recognize DAs.

Keywords: Bayesian approaches, dialogue act, lexical information, prosody,
syntactic information
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Speaker Dialogue Act English

A Conventional-opening Hallo!?

B Conventional-opening Hi Peter!
B Statement It’s me, Michael.
B Question How are you?

A Conventional-opening Hello Michael!
A Statement Very well.
A Question And you?

B Statement I’m well too.

Table 1: Example of the beginning of a dialogue between persons A and B in
Czech, French and English with the corresponding DA labels.

1 Introduction

Modeling and automatically identifying the structure of spontaneous dialogues is
very important to better interpret and understand them. The precise modeling
of spontaneous dialogues is still an open issue, but several specific characteristics
of dialogues have already been clearly identified. Dialogue Acts (DAs) are one
of these characteristics.

Austin defines in [1] the dialogue act as the meaning of an utterance at the
level of illocutionary force. In other words, the dialogue act is the function of a
sentence (or its part) in the dialogue. For example, the function of a question
is to request some information, while an answer shall provide this information.

Dialogue acts can also be used in the context of Spoken Language Under-
standing. In such systems, dialogue acts are defined much more precisely, but
are also application-dependent. Hence, Jeong et al. define in [2] a dialogue
act as a domain-dependent intent, such as “Show Flight” or “Search Program”
respectively in the flight reservation and electronic program guide domains.

Table 1 shows an example of the beginning of a dialogue between two friends,
with Peter (A) calling Michal (B) on the phone. The corresponding DA labels
are also shown. Each utterance is labeled with a unique DA.

1.1 Applications

There are many applications of automatic dialogue acts detection. We mention
here only the most important ones: dialogue systems, machine translation, Au-
tomatic Speech Recognition (ASR), topic identification [3] and animation of
talking head.

In dialogue systems, DAs can be used to recognize the intention of the user,
for instance when the user is requesting some information and is waiting for
it, or when the system is trying to interpret the feedback from the user. An
example of a dialogue management system that uses DA classification is the
VERBMOBIL [4] system.
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In machine translation, dialogue acts can be useful to choose the best solution
when several translations are available. In particular, the grammatical form of
an utterance may depend on its intention.

Automatic detection of dialogue acts can be used in ASR to increase the
word recognition accuracy, as shown for example in [5]. In this work, a different
language model is applied during recognition depending on the actual DA.

A talking head is a model of the human head that reproduces the speech of
a speaker in real-time. It may also render facial expressions that are relevant
to the current state of the discourse. Exploiting DA recognition in this context
might make the animation more natural, for example by raising the eyebrows
when a question is asked. Another easier option is to show this complementary
information with symbols and colors near the head.

1.2 Objectives

Recognizing dialogue acts thus can be seen as the first level of dialogue un-
derstanding and is an important clue for applications, as it has been shown
in the previous section. Several different dialogue act recognition approaches
have been proposed in the literature. The main goal of this paper is to give a
brief overview of these approaches. A short description is thus given for each of
them, and is most often complemented by a discussion of their theoretical and
practical advantages and drawbacks.

1.3 Paper Structure

This paper is organized as follows. The first section presents an introduction
about the importance of dialogue act recognition with its main applications
and objectives. Section 2 briefly describes the task of dialogue act recognition.
Sections 3 and 4 describe the most common existing DA recognition approaches.
The last section summarizes and discusses them altogether.

2 Dialogue Act Recognition

The first step to implement a dialogue act recognition system consists in defining
the set of DAs labels that is relevant for the task. Then, informative features
have to be computed from the speech signal and DA models are trained on
these features. The segmentation of the dialogue into utterances may be carried
out independently from DA recognition, or alternatively realized during the
recognition step with joint DA recognition and segmentation models.

2.1 Dialogue Act Tag-set

The DA tag-set definition is an important but difficult step, because it results
from a compromise between three conflicting requirements:
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1. The DA labels should be generic enough to be useful for different tasks, or
at least robust to the unpredictable variability and evolution of the target
application;

2. The DA labels must be specific enough to encode detailed and exploitable
characteristics of the target task;

3. The DA labels must be clear and easily separable, in order to maximize
the agreement between human labelers.

Many different DA tag-sets can be found in the literature, the oldest being
reviewed in [6]. Recently, a few of them seem to emerge as a common baseline,
from which application-specific DA tags are derived. These are the Dialogue Act
Markup in Several Layers (DAMSL) [7], the Switchboard SWBD-DAMSL [8],
the Meeting Recorder [9], the VERBMOBIL [10] and the Map-Task [6] DAs
tag-sets.

DAMSL was initially designed to be universal. Its annotation scheme is
composed of four levels (or dimensions): communicative status, information
level, forward looking functions and backward looking functions. Generally,
these dimensions are considered as orthogonal and it shall be possible to build
examples for any possible combination of them. The communicative status
states whether the utterance is uninterpretable, abandoned or is a self-talk. This
feature is not used for most of the utterances. The information level provides
an abstract characterization of the content of the utterance. It is composed
of four categories: task, task-management, communication-management and
other-level. The forward looking functions are organized into a taxonomy, in a
similar way as actions in traditional speech act theory. The backward looking
functions show the relationship between the current utterance and the previous
dialogue acts, such as accepting a proposal or answering the question. DAMSL
is composed of 42 DA classes.

SWBD-DAMSL is the adaptation of DAMSL to the domain of telephone con-
versations. Most of the SWBD-DAMSL labels actually correspond to DAMSL
labels. The Switchboard corpus utterances have first been labeled with 220 tags.
130 of those labels that occurred less than 10 times have been clustered, leading
to 42 classes.

The Meeting Recorder DA (MRDA) tag-set is based on the SWBD-DAMSL
taxonomy. The MRDA corpus contains about 72 hours of naturally occurring
multi-party meetings manually-labeled with DAs and adjacency pairs. Meetings
involve regions of high speaker overlap, affective variation, complicated inter-
action structures, abandoned or interrupted utterances, and other interesting
turn-taking and discourse-level phenomena. The tags are not organized any-
more on a dimensional level (such as DAMSL), but the correspondences are
rather listed at the tag level. Each DA is described by one general tag, which
may be for several DAs completed by one (or more) specific tag. A specific
tag is used when the utterance cannot be sufficiently characterised by a general
tag only. For example, the utterance “Just write it down!” is characterised by
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Feedback positive

Accept Confirm

Figure 1: Part of the VERBMOBIL DAs decision tree hierarchy.

the general tag statement and by the additional specific tag command. MRDA
contains 11 general tags and 39 specific tags.

The DA hierarchy in VERBMOBIL is organized as a decision tree. This
structure is chosen to facilitate the annotation process and to clarify relation-
ships between different DAs. During the labeling process, the tree is parsed
from the root to the leaves, and a decision about the next branch to parse is
taken at each node (c.f. Figure 1).

42 DAs are defined in VERBMOBIL for German, English and Japanese,
with 18 DAs at the illocutionary level.

The DA tags in the Map Task corpus [6] are structured into three levels, the
highest modeling transactions, where each transaction accomplishes one major
step in the speakers’ plan. Transactions are then composed of conversational
games, which model the regularity between questions/answers, statements/deny
or acceptance, and so on. Games are finally made up of conversational moves,
which classify different kinds of games according to their purposes. 19 moves are
thus structured hierarchically into a decision-tree that is used to label each DA.
For instance, the root of the trees splits into three moves: initiation, response
and preparation. Initiation itself is then splitted into command, statement and
question, and so on. Moves sequences are then delimited into conversational
games, which start with an initiation and ends when that initiation’s purpose is
either fulfilled or abandoned. Each game is labeled with its purpose, whether it
is a top level game or an embedded game, and is delimited in time. Transactions
include task description, and are thus application-dependent.

2.2 Dialogue Act Recognition Information

The most important types of information commonly used to recognize dialogue
acts are described below.

The first one is lexical information. Every utterance is composed of a
sequence of words. Generally, the DA of an utterance can be partly deduced
from the lists of words that form this utterance. For example, Wh-questions
often contains an interrogative word, which rarely occurs in other DA classes.
Lexical information is typically captured by words unigrams.

The second one is syntactic information. It is related to the order of the
words in the utterance. For instance, in French and Czech, the relative order of
the subject and verb occurrences might be used to discriminate between decla-
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rations and questions. Words n-grams are often used in dialogue act recognition
to model some local syntactic information. Král et al. propose in [11] to further
model words position in the utterance in order to also take into account global
syntactic information. Another type of syntactic information recently used for
DA recognition are “cue phrases”, which actually corresponds to a subset of
specific n-grams, where n may vary from 1 to 4, which are selected based on
their capacity to predict a specific dialogue act and on their occurrence fre-
quency [12]. These cue phrases actually correspond to common and typical
sequences of words. As they do not model the whole lexical space, one might
interpret them in a context of DA detection instead of DA recognition.

Another information is semantic information. The DA also depends on
the meanings of the utterance and the words that compose it. However, many
different definitions of “semantic information” exist, ranging from broad topic
categories such as “weather”, “sports”, down to precise frame-based interpre-
tations, e.g. “show flights from London to Paris on march 12th”. The latter
is typically used in spoken language understanding applications, where a di-
alogue act is dependent on a specific pre-defined action [2]. Another kind of
semantic information that is used in DA recognition is specific entities, such as
named or task entities. For instance, date, place or proper nouns, when they
are uttered, may constitute important cues to find out what is the utterance
dialogue act [13]. Also, Bangalore et al. use in [14] speaker and task entities as
features. They obtain a DA error rate of 38.8% with 67 dialogue acts adapted
from DAMSL on a product ordering task.

Yet another useful information to recognize DAs is prosody, and more par-
ticularly the melody of the utterance. Usually, questions have an increasing
melody at the end of utterance, while statements are often characterised by a
slightly decreasing melody.

The last information mentioned here is the context of each DA. Hence, any
DA depends on the previous (and next) DAs, the most important context being
the previous one. For example, a “Yes” or “No” answer is most likely to follow
a Yes/no question. The sequence of DAs is also called the dialogue history.

We focus next on the three following information sources, which are the most
commonly used in application-independent DA recognition systems [15, 16]:

• Lexical (and syntactic) information

• Prosodic information

• Dialogue history

2.2.1 Lexical Information

Lexical and syntactic features can be derived from the word sequence in the
dialogue. The first broad group of DA recognition approaches that uses this
type of features is based on the assumption that different dialogue acts are
generally composed of sequences of different words.
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The correspondence between DAs and words sequences is usually represented
either by n-grams, Naive Bayes, Hidden Markov Models, Bayesian Networks,
etc. (see section 3), or Non-Bayesian approaches, such as Neural Networks,
Semantic Classification and Regression Trees, etc. (see section 4).

2.2.2 Prosodic Information

Most researchers agree on the fact that the lexical/syntactic information is not
generally sufficient to explain DAs. Prosodic cues [17] are also related to DA
instances.

For example, questions are usually characterized by an increasing melody at
the end of the utterance [18], and accepts have usually much more energy than
backchannels and acknowledgments [9].

Prosody is successfully used in [19] for French and Vietnamese question de-
tection. Authors exploit the fact that French questions are usually characterized
by their intonation curves. The set of prosodic features is derived from the curve
of the fundamental frequency (F0). Some features are F0 statistics (Min, Max,
Mean, etc.), while other features describe whether F0 is raising or falling. Ac-
cording to the authors, Vietnamese questions and affirmative sentence differ in
the F0 contour at the final segment of the sentence, both in register and inten-
sity. They respectively obtain on the French DELOC (telephone meetings) and
NESPOLE [20] corpora 74% and 73% of accuraccy. Their question detection
accuracy on the Vietnamese VietP corpus is 77%.

Prosodic features are usually modeled with the same Bayesian or Non-
Bayesian methods as used for lexical information.

2.2.3 Dialogue History

The third general type of information used in classical DA recognition systems
is the dialogue history. It is defined by the sequence of previous DAs that have
been recognized. It may be used to predict the next DA. Different formalisms
are employed to model this information: statistical models such as n-grams,
Hidden Markov Models (HMMs), Bayesian Networks, etc.

2.3 Segmentation

To recognize DAs, the dialogue must first be segmented into sentence-level units,
or utterances [21], where each utterance represents a single DA. Segmentation
of the dialogue into such utterances may be carried out separately or realized
during the recognition step.

The hidden-event language model has been proposed in [22] to automatically
detect utterance boundaries. Its basic principle consists in modeling the joint
probability of words and sentence boundaries with an n-gram. The training
of the model is realized as in the classical n-gram case with a new token that
represents the DA boundary. Shriberg et al. show in [23] that prosodic features
give better results than lexical features to segment utterances.
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Kolář et al. show in [24] an extension of this approach. They adapt the
hidden-event language models to the speaker to improve dialogue act segmen-
tation accuracy. Speaker adaptation is realized by linear combination of the
speaker independent and speaker dependent language models. They use ICSI
meeting corpus [25].

Ang et al. use in [26] a decision tree that estimates the probability of oc-
currence of a DA boundary after each word based on the length of the pause
between contiguous words of the same speaker, and a bagging classifier that
models prosodic attributes. This approach is further combined via an HMM
with an hidden-event language model.

The main focus of this review being dialogue act recognition, we will not
detail more in the following the works about utterance segmentation. Please
refer for example to [27] for an overview of this domain.

3 Bayesian Approaches

The main types of automatic DA recognition approaches proposed in the lit-
erature can be broadly classified into Bayesian and Non-Bayesian approaches.
Bayesian approaches are presented in this section and Non-Bayesian approaches
are described in Section 4.

3.1 Lexical (and Syntactic) N-Gram DA Models

The Bayesian formalism has been the preferred approach in the DA recognition
domain for a long time now. For instance, [28] finds the best sequence of dialogue
acts Ĉ by maximizing the a posteriori probability P (C|O) over all possible
sequences of dialogue acts C as follows:

Ĉ = argmax
C

P (C|O)

= argmax
C

P (C).P (O|C)

P (O)
(1)

= argmax
C

P (C).P (O|C)

The most common methods model P (O|C) = P (W |C), where W is the
word sequence in the pronounced utterance with statistic models such as n-
grams. These methods are based on the observation that different DA classes
are composed of distinctive word strings. For example, 92.4% of the “uh-huh”
occur in Backchannels and 88.4% of the trigrams “<start> do you” occur in
yes-no questions [15]. The words order and positions in the utterance may also
be considered. A theory of word frequencies, which is the basis for DA modeling
from word features, is described in [3].
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3.1.1 DA Recognition from Exact Words Transcriptions

The following approach is based on the hypothesis that the words in the utter-
ances are known. Then, Equation 1 becomes:

arg max
C

P (C|W ) = arg max
C

P (C).P (W |C) (2)

The “Naive Bayes assumption”, which assumes independence between suc-
cessive words, can be applied and leads to:

arg max
C

P (C).P (W |C) = arg max
C

P (C).
T
∏

i=1

P (wi|C) (3)

This equation represents the unigram model, also sometimes called the Naive
Bayes classifier. In this case, only lexical information is used. Higher order mod-
els, such as 2-grams, 3-grams, etc., also take into account some local syntactic
information about the dependencies between adjacent words. Because of limited
corpus sizes, the use of 4-grams and more complex models is rare.

Reithinger et al. use in [29] unigram and bigram language models for DA
recognition on the VERBMOBIL corpus. Their DA recognition rate is about
66% for German and 74% for English with 18 dialogue acts. In [30], a naive
Bayes n-gram classifier is applied to the English and German language. The
authors obtain a DA recognition rate of 51% for English and 46% for German
on the NESPOLE corpus. Grau et al. use in [31] the naive Bayes and uniform
naive Bayes classifiers with 3-grams. Different smoothing methods (Laplace and
Witten Bell) are evaluated. The obtained recognition rate is 66% on the SWBD-
DAMSL corpus with 42 DAs. Ivanovic also uses in [32] the naive Bayes n-grams
classifier and obtains about 80% of recognition rate in the instant messaging
chat sessions domain with 12 DAs classes derived from the 42 DAs of DAMSL.

One can further assume that all DA classes are equi-probable, and thus leave
the P (C) term out:

Ĉ = argmax
C

P (W |C) (4)

This approach is referred to as the uniform naive Bayes classifier in [31].

3.1.2 DA Recognition from Automatic Word Transcription

In many real applications, the exact words transcription is not known. It can be
approximately computed from the outputs of an automatic speech recognizer.
Let A be a random variable that represents the acoustic information of the
speech stream (e.g. spectral features).

The word sequence W is now an hidden variable, and the observation like-
lihood P (A|C) can be computed as:

P (A|C) =
∑

W

P (A|W, C).P (W |C) (5)

=
∑

W

P (A|W ).P (W |C) (6)
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where C is the DA class and P (A|W ) is the observation likelihood computed
by the speech recognizer for a given hypothesized word sequence W . Most of
the works on Bayesian dialogue act recognition from speech, such as in [15], use
this approach and approximate the summation over the k-best words sequence
only.

3.2 Dialogue Sequence N-Gram Models

The dialogue history also contains very important information to predict the
current DA based on the previous ones. The dialogue history is usually modeled
by a statistical discourse grammar, which represents the prior probability P (C)
of a DA sequence C.

Let Cτ be a random variable that represents the current dialogue act class
at time τ . The dialogue history H is defined as the previous sequence of DAs:
H = (C1, .., Cτ−1). It is usually reduced to the most recent n DAs: H =
(Cτ−n+1, .., Cτ−1). The most common values for n are 2 and 3, leading to 2-gram
and 3-gram models. In order to train such models, the conditional probabilities
P (Cτ |Cτ−n+1, .., Cτ−1) are computed on a labeled training corpus. Smoothing
techniques, such as standard back-off methods [33], may also be used to train
high-order n-grams. N-grams are successfully used to model dialogue history
in [15, 34].

Polygrams are mixtures of n-grams of varying order: n can be chosen arbi-
trarily large and the probabilities of higher order n-grams are interpolated by
lower order ones. They usually give better recognition accuracy than standard
n-grams and are shown in [35].

3.3 Hidden Markov Models

Hidden Markov Models can also be used as in [15] to model sequences of dialogue
acts. Let O be a random variable that represents the observations and C the
sequence of DAs classes. n th-order HMM can be considered, which means
that each dialogue act depends on the n previous DAs (in a similar way as
for n-grams). Then, each HMM state models one DA and the observations
correspond to utterance level features. The transition probabilities are trained
on a DA-labeled training corpus.

DA recognition is carried out using some dynamic programming algorithm
such as the Viterbi algorithm.

HMMs with word-based and prosodic features are successfully used to model
dialogue history in [36]. [5] uses intonation events and tilt features such as: F0
(fall/rise, etc.), energy, duration, etc. She achieves 64% of accuracy on the
DCIEM map task corpus [37] with 12 DA classes. Ries combines in [38] HMMs
with neural networks (c.f. Section 4.1). He obtains about 76% of accuracy on
the CallHome Spanish corpus. In [39] language models and modified HMMs are
applied on the Switchboard corpus [40] with the SWBD-DAMSL tag-set.
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Figure 2: Example of Bayesian network for dialogue act recognition.

3.4 Bayesian Networks

A Bayesian network is represented by a directed acyclic graph. Nodes and arcs
respectively represent random variables and relations (dependencies) between
nodes. The topology of the graph models conditional independencies between
the random variables. In the following, we do not differentiate dynamic Bayesian
networks (with stochastic variables) from static Bayesian networks, as most of
our variables are stochastic, and when static Bayesian networks are drawn,
they represent an excerpt of a dynamic Bayesian network at a given time slice.
The stochastic variables are conditionally dependent of theirs descendants and
independent of theirs ascendants.

An example of Bayesian network for dialogue act recognition is shown in
Figure 2. Node C represents the current dialogue act. Utterance features are
represented by nodes W (sequence of words in the utterance) and F (prosodic
features). The dialogue context is not considered there. The conditional inde-
pendence assertions of this network allows the following factorization:

P (C, W, F ) = P (W |C).P (F |C).P (C) (7)

In order to build such a network, the network structure (conditional de-
pendencies) and the conditional probability distributions must be defined. The
conditional probabilities are trained statistically on a training corpus. The
topology of network can be created manually or automatically.

Bayesian networks are successfully used in [41] for dialogue act recognition.
In the first experiment reported, three features are used: sentence type (declara-
tive, yes/no question, etc.), subject type (1st/2nd/3rd person) and punctuation
(question mark, exclamation mark, comma, etc). The Bayesian network is de-
fined manually. They achieve 44% of accuracy on the SCHISMA corpus [42].
In the second experiment, a small corpus is derived from the dialogue system
used to interact with the navigation agent. Utterances are described by surface
level features, mainly keywords-based features. These features are computed
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(a)

C1 C2 CT
...

W1 W2 WT
...

(b)

C1 C2 CT
...

...W1 W2 WT

Figure 3: Two Bayesian networks for dialogue act recognition: Ci represents a
single DA, while Wi is a sequence of words.

automatically for each utterance. Bayesian networks are further generated au-
tomatically iteratively, starting from a small hand-labeled DA corpus. This
network is used to parse another large corpus, and a new network is gener-
ated from this corpus. This approach gives 77% of accuracy for classification of
forward-looking functions (7 classes) and 88% of accuracy for backward-looking
functions (3 classes).

Another application of Bayesian network in dialogue act recognition is shown
in [43]. Two types of features are used: utterance features (words in the ut-
terance: wi) and context features (previous dialogue act: Cτ−1). The authors
compare two different Bayesian networks to recognize DAs (see Figure 3).

These networks are built manually. In the left model of Figure 3, each
dialogue act is recognized from the words of the current utterance and from
the previous DA. In the right model of Figure 3, the authors further consider
an additional dependency between each word of the utterance and its previous
dialogue act (diagonal arcs). They achieve about 64% precision on a subset of
the MRDA corpus and with the reduced DA set size.

Another Bayesian model, the triangular-chain conditional random field, which
jointly models dialogue acts and named entities, has been proposed in [2]. This
model is shown in Figure 4.

This joint model is shown to outperform sequential and cascade models, in
which dialogue acts are assumed independent of named entities. In the inde-
pendent approach, DAs are often modeled by a multivariate logistic regression
(or maximum entropy classifier)

p(z|x) =
1

Zz(x)
exp

(

∑

k

νkhk(z, x)

)

that maximizes the entropy hk(z, x), where z is the DA and x the words se-
quence. Alternatively, the joint model combines both maximum entropy and
conditional random fields approaches.

Dynamic Bayesian Network (DBN) have also successfully been used for DA
recognition in [44], where a switching DBN combines several partial models and
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xz z

yt−1 yt yt+1

xt−1 xt xt+1

Figure 4: Triangular-chain Conditional Random Field, from [2]. It is used to
jointly models dialogue acts (represented by variables z) and named entities
(represented by variables y). Variable x encodes the words sequence.

coordinates the DA recognition task. The relation between the sequences of
transcribed words and their DA labels is modeled by an interpolated Factored
Language Model (FLM), while the dialogue history is represented by a trigram
language model. Prosodic features (pitch, energy, etc.) are also used for seg-
mentation. The proposed approach is based on a switching DBN model that
alternates between two sub-models: an intra-DA model that represents a sin-
gle DA class associated to a words sequence, and an inter-DA model that is
activated at DA boundaries. A dedicated random variable of these models is
used to detect these DA boundaries. The authors obtain on the AMI Meeting
Corpus [45] about 60% of DA tagging rate with 15 DA classes.

4 Non-Bayesian Approaches

Non-Bayesian approaches are also successfully used in the DA recognition do-
main, but they are not so popular as Bayesian approaches. Examples of such ap-
proaches are Neural Networks (NNs), such as Multi-Layer Perceptron (MLP) or
Kohonen Networks, Decision Trees, Memory-Based Learning and Transformation-
Based Learning.

4.1 Neural Networks

A neural network (NN) [46] is an interconnected group of artificial neurons that
uses a mathematical model or computational model for information processing
based on a connectionist approach to computation. It can be used to model
complex relationships between inputs and outputs or to find patterns in data.
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Figure 5: Example of multi-layer perceptron.

4.1.1 Multi-Layer Perceptron

One of the most frequently used neural network technique in the DA recognition
domain is the multi-layer perceptron (MLP, see Figure 5), which consists of
a set of source nodes forming the input layer, one or more hidden layers of
computation nodes, and one output layer. The input signal propagates through
the network layer-by-layer. An MLP can represent a non linear function.

Wright describes in [5] an approach with a one-hidden-layer MLP. 54 supraseg-
mental and duration prosodic features are used as inputs. She achieves 62% of
accuracy on the DCIEM map task corpus [37] with 12 DA classes. Ries success-
fully uses in [38] an MLP both stand-alone, and in combination with HMMs.
He obtains a similar accuracy (about 76%) on the CallHome Spanish corpus
with both setups. Sanchis et al. also use in [47] an MLP to recognize DAs.
The features considered are the words of the lexicon restricted to the semantic
task (138 inputs=size of the lexicon). The experiments are performed on the
Spanish dialogue corpus in the train transport domain (16 DA classes). They
achieve about 93% of accuracy on the text data and about 72% of accuracy
on the recognized speech. Note that this approach may be difficult to apply
on a large lexicon. Levin et al. use in [30] a set of binary features to train an
MLP. These features are computed automatically by combining grammar-based
phrasal parsing and machine learning techniques. They obtain a DA recognition
accuracy of about 71% for English and about 69% for German on the NESPOLE
corpus.

4.1.2 Kohonen Networks

Another type of neural network used in the dialogue act classification domain
is Kohonen Networks. A Kohonen network [48], also known as Self-Organizing
Map (SOM), defines an ordered mapping, a kind of projection from a set of given
data items onto a regular, usually two-dimensional grid. A model is associated
with each grid node (see Figure 6).
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(a)

G11 G12 G13
. . . G1N

G21 G22 G23
. . . G2N

G31 G32 G33
. . . G3N

. . . . . . . . . . . . . . .
. . . . .
. . . . .

GN1 GN2 GN3
. . .GNN

(b)

C1 C2 G3

C4 C5 C6

C7 C8 C9

Figure 6: Two Kohonen networks (from [50]) with a rectangular structure to
model dialogue acts: The inputs to the large network (on the left) are a set
of binary utterance features. Neurons representative of DA classes are grayed.
The small network on the right represents the outputs of system (DA classes).
The connexions between the neighboring nodes are not shown.

The topology of the SOMs is a single layer feedforward network where the
discrete outputs are arranged into a low dimensional (usually 2D or 3D) grid.
Each input is connected to all output neurons. A weight vector with the same
dimensionality as the input vectors is attached to every neuron. The number of
input dimensions is usually much larger than the output grid dimension. SOMs
are mainly used for dimensionality reduction.

The models of the Kohonen network are estimated by the SOM algorithm [49].
A data item is mapped onto the node which model is the most similar to the
data item, i.e. has the smallest distance to the data item, based on some metric.

Kohonen networks for dialogue act recognition are used in [50]. The authors
use seven superficial utterance features: speaker, sentence mode, presence or
absence of a wh-word, presence or absence of a question mark, etc. Each utter-
ance is represented by a pattern of these features, which is encoded into a binary
format for the SOM representation. Initially, the exact number of DA classes
is not known a priori, and only the large network on the left is created and
trained. The clustering process is interrupted after a given number of clusters
have been found.

To interpret the clusters, another small Kohonen network is built (right
model in Figure 6). This network contains as many neurons as DA classes. These
neurons are initialized by the values of the weight-vectors of the representative
neurons from the large network.

The quality of classification is evaluated by the Specificity Index (SI) [51]
and by the Mean number of Conditions (MoC). They achieve about 0.1 for SI
and about 2.6 for MoC on the SCHISMA corpus, with 15 DA classes and a
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Figure 7: Example of a part of the decision tree in the DA recognition domain:
recognition of Backchannels (B) and Accepts (A) by prosody, from [16].

network with 10*10 neurons. Another experiment has been performed with 16
DA classes and a larger network with 12*12 neurons with comparable results.
Generally, unsupervised methods such as Kohonen networks are rarely used for
DA recognition.

4.2 Decision Trees

Decision trees (or Classification and Regression Trees, CARTs) [52] are genera-
tion tools that are successfully used in operations research and decision analysis.
They are usually represented by an oriented acyclic graph (see Figure 7). The
root of the tree represents the starting point of the decision, each node contains
a set of conditions to evaluate, and arcs show the possible outcomes of these
decisions.

In the case of DA recognition, the decisions usually concern utterance fea-
tures. Each decision compares the value of some feature with a threshold. For
example, in Figure 7, three different prosodic features (sf, ld and ldp) are shown
with their corresponding thresholds (T, T1, T2 and T12). sf is the pause type fea-
ture and ld and ldp are the duration type features. Training of the decision tree
is performed automatically on the training corpus. The output of the CART is
the probability of the DA given the utterance features (lexical and prosodic),
i.e., the posterior probability P (C|W, F ). The main advantage of CARTs is that
they can combine different discrete and continuous features.

Wright uses in [5] 54 suprasegmental and duration prosodic features to train
the trees on the CART algorithm [52]. She achieves 63% of accuracy on the
DCIEM map task corpus with 12 DA classes. Shriberg et al. also use in [16]
CARTs for DA recognition with prosodic features. They use CARTs to rec-
ognize a few DAs only, which are very difficult to recognize with lexical (and
syntactic) features. These DAs are recognized from prosody only. CARTs are
used for example to distinguish statements from questions because questions
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usually differ from statements by an increasing final F0 curve. Therefore, this
CART classifier is trained on statements and questions data only. Levin et al.
compare in [30] CARTs with other classifiers, mainly Naive Bayes and MLP clas-
sifiers. They use binary grammatical features for this comparison. They show
that CARTs outperform the Naive Bayes classifier and that they give compara-
ble results with an MLP. The resulting DA recognition accuracy is about 68%
for English and about 66% for German on the NESPOLE corpus.

4.3 Memory-Based Learning

Memory-Based Learning (MBL) [53] is an application of the memory-based
reasoning theory in the field of machine learning. This theory is based on the
assumption that it is possible to handle a new sample by matching it with
stored representations of previous samples. Hence, in MBL, all known samples
are stored in memory for future reference, and any unknown sample is classified
by comparing it with all the stored samples. The main advantage of MBL
compared to other machine learning techniques is that it successfully manages
exceptions and sub-regularities in data. The main drawback of the method is
its high memory and computational requirements.

Several methods can be used to compare the stored and recognized samples.
The most popular one is the k-Nearest Neighbor (k-NN) [54]. It consists in
defining a distance measure between samples, and of retrieving the k stored
samples that have the smallest distance to the target one. These k samples
are assumed to be similar to the recognized one, and the recognized sample is
classified into the dominant class amongst these “neighbors”.

Rotaru uses in [55] MBLs in an automatic dialogue acts tagging task on the
Switchboard corpus [40] of spontaneous human-human telephone speech. The
utterance features are based on word bigrams computed on the whole training
corpus. These bigrams are hashed to a given number of features, which optimal
value is found experimentally. The hash function uses the letters present in
the bigrams and the number of features. The author experiments a various
number of neighbors. The best performance is about 72% of accuracy with
three neighbors. Levin et al. exploit in [30] MBLs on the NESPOLE corpus.
They use the same features as described in the MLP case (see Section 4.1.1) on
the IB1 algorithm [56] with one neighbor. They achieve about 70% of accuracy
for English and about 67% for German. MBLs are also used in [57] with the
IB1 algorithm. The authors obtain an accuracy of about 74% with prosodic,
lexical and context features on a corpus of Dutch telephone dialogues between
users and the Dutch train timetable information system.

4.4 Transformation-Based Learning

The main idea of Transformation-Based Learning (TBL) [58] is to start from
some simple solution to the problem, and to apply transformations to obtain the
final result. Transformations are composed in a supervised way. Given a labeled
training corpus and a set of possible transformation templates on this corpus,
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all possible transformations are generated from the templates, after what the
transformations are selected iteratively. The templates can be for example: if
tag X is after tag Y and/or N previous utterances contain word w, then change
actual tag to Z. At each step the “best” transformation (bringing the largest
improvement to precision) is selected and applied to the current solution. The
algorithm stops when the selected transformation does not modify the data
enough, or when there are no more transformations left.

The total number of all possible transformations can be very high. It is
thus often computationally expensive to test all transformations, especially since
most of them do not improve precision. A Monte-Carlo (MC) approach [59] can
be used to tackle this issue: only a fixed number of transformations are selected
randomly and used in the next steps. Although this may exclude the best
transformation from the retained set, there are usually enough transformations
left so that one of them still brings a large improvement to precision.

TBL can be applied to most classification tasks, and has been proposed for
automatic DA recognition and some related works. [60] use TBL with a Monte
Carlo strategy on the VERBMOBIL corpus. They use the following utterance
features for DA recognition: cue phrases, word n-grams, speaker identity, punc-
tuation marks, the preceding dialogue act, etc. The resulting DA accuracy is
about 71% with 18 dialogue acts. Bosch et al. use in [61] TBLs on the corpus
of Dutch telephone dialogues between users and the Dutch train timetable in-
formation system, with a very limited DA tag-set. Question-answer pairs are
represented by the following feature vectors: six features represent the history
of questions asked by the system, while the following features represent the
recognized user utterance, which is encoded as a sequence of bits, with 1 indi-
cating that the i-th word of the lexicon occurs at least one time in the word
graph. The last feature is used for each user utterance to indicate whether this
sentence gave rise to a communication problem or not, as requested by the ap-
plication, which final objective is to detect communication problems (incorrect
system understanding) between the user and the dialogue system. They achieve
to detect about 91% of all communication problems with the rule-induction al-
gorithm RIPPER [62]. The authors show that TBL outperforms MBL on this
task. Lendvai et al. also use in [57] TBLs with the RIPPER algorithm. They
obtain an accuracy of about 60% with prosodic, lexical and context features on
the same Dutch corpus as in the previous experiments.

4.5 Meta-Models

Model probabilities, such as the ones computed by the lexical n-gram previ-
ously described, can also be used as features of a “meta-model”, which role is to
combine different sources of information in order to disambiguate the utterance.
Hidden Markov Models are typically used for this purpose, as already described
in section 3.3. Another solution exploits boosting and committee-based sam-
pling techniques, which can be used to compute tagging confidence measures,
such as in [60], or to recognize sub-tasks labels [63], where a sub-task is defined
as a sequence of DAs. Zimmermann compares in [64] n-gram, cue-phrases, max-

18



imum entropy and boosting classifiers for dialogue act recognition on a meeting
corpus. On the ICSI MRDA meeting corpus, they obtain 23.3% of DA recog-
nition accuracy with 5 DA classes, by combining four individual DA classifiers:
n-grams, cue phrases, maximum entropy and boosting. Combination is realized
with an MLP.

5 Discussion and Conclusions

Automatic recognition of dialogue acts is an important yet still underestimated
component of Human-Machine Interaction dialogue architectures. As shown
in this review, research in this area have made great progresses during the last
years. Hence a few DA tag-sets have emerged as pseudo-standards and are more
and more often used in the community. Nevertheless, these tag-sets are nearly
always manually adapted to fit the specificities of each particular application,
which points out a major issue in this area that concerns the variability of
dialogue acts definitions and the consequent excessive costs and difficulty to
port some previous work to a new task.

Another interesting characteristic of the dialogue act recognition domain is
the fact that several different sources of information have to be combined to
achieve reasonably good performances. In particular, most of the works dis-
cussed in this review show the importance to combine both lexical and prosodic
information, as well as higher-level knowledge such as the overall structure of
the dialogue used in the task, or semantic information such as named or task-
related entities. This confirms our intuition that dialogue act recognition is a
rich research area that might benefit from a better understanding of the dialogue
processing, in particular with regard to the context of the dialog. Hence, many
contextual relevant information are still not considered, for instance the social
roles and relationships between the users, the emotions of the speakers, the sur-
rounding environment as well as the past and recent history of interaction. All
these information considerably influence the course of a dialogue, but are also
extremely difficult to model and thus to include in our models. However, we
have seen that the domain has progressively seen its influence area grows and
intersects more and more with other research areas: from text to speech, from
lexicon to prosody and semantic. We are convinced that this progression should
continue, and that the overlap with adjacent domains should keep on enlarg-
ing, which is easier to achieve now thanks to the recent progresses realized in,
for example, the fields of user modeling and collaborative filtering, or emotions
recognition, just to cite a few.
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