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Abstract: Future-oriented networking infrastructures are characterized by highly dynamic Streaming
Data (SD) whose volume, speed and number of dimensions increased significantly over the past
couple of years, energized by trends such as Software-Defined Networking or Artificial Intelligence.
As an essential core component of network security, Intrusion Detection Systems (IDS) help to
uncover malicious activity. In particular, consecutively applied alert correlation methods can aid in
mining attack patterns based on the alerts generated by IDS. However, most of the existing methods
lack the functionality to deal with SD data affected by the phenomenon called concept drift and
are mainly designed to operate on the output from signature-based IDS. Although unsupervised
Outlier Detection (OD) methods have the ability to detect yet unknown attacks, most of the alert
correlation methods cannot handle the outcome of such anomaly-based IDS. In this paper, we
introduce a novel framework called Streaming Outlier Analysis and Attack Pattern Recognition,
denoted as SOAAPR, which is able to process the output of various online unsupervised OD methods
in a streaming fashion to extract information about novel attack patterns. Three different privacy-
preserving, fingerprint-like signatures are computed from the clustered set of correlated alerts by
SOAAPR, which characterizes and represents the potential attack scenarios with respect to their
communication relations, their manifestation in the data’s features and their temporal behavior.
Beyond the recognition of known attacks, comparing derived signatures, they can be leveraged to find
similarities between yet unknown and novel attack patterns. The evaluation, which is split into two
parts, takes advantage of attack scenarios from the widely-used and popular CICIDS2017 and CSE-
CIC-IDS2018 datasets. Firstly, the streaming alert correlation capability is evaluated on CICIDS2017
and compared to a state-of-the-art offline algorithm, called Graph-based Alert Correlation (GAC),
which has the potential to deal with the outcome of anomaly-based IDS. Secondly, the three types
of signatures are computed from attack scenarios in the datasets and compared to each other. The
discussion of results, on the one hand, shows that SOAAPR can compete with GAC in terms of alert
correlation capability leveraging four different metrics and outperforms it significantly in terms of
processing time by an average factor of 70 in 11 attack scenarios. On the other hand, in most cases,
all three types of signatures seem to reliably characterize attack scenarios such that similar ones are
grouped together, with up to 99.05% similarity between the FTP and SSH Patator attack.

Keywords: intrusion detection; alert analysis; alert correlation; outlier detection; attack scenario;
streaming data; network security
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1. Introduction

In recent times, trends and technologies, such as Internet of Things, Software-Defined
Everything and Artificial Intelligence, have accelerated the increasing interconnection
of networking devices. These circumstances have led to steadily blurred boundaries be-
tween diverse application domains and are characterized by high-volume, high-speed and
high-dimensional Streaming Data (SD) posing enormous challenges for applied security
mechanisms. Intrusion Detection Systems (IDS) have crystallized as an essential core
component in a holistic security solution by identifying malicious activity in the case of
compromising. Apart from the distinction of the architecture for IDS, Host-based IDS or
Network-based IDS, in general, two types of detection methods exist. Misuse-based systems,
also denoted as signature-based or knowledge-based, detect attacks based on already
known patterns (signatures). Being quite fast and reliable in terms of detecting known
attacks, they are not designed to uncover novel ones whose signatures are not available;
thus, misuse-based detection is no longer enough [1]. The growth of Machine Learning
(ML) has led to a boost in anomaly-based detection methods that create a model of trusted
activity from a set of collected data samples and identify malicious activity by analyzing
behavior deviations. Although this type of method is predestined to detect novel, yet
unknown, attack patterns without requiring a priori knowledge, they are accompanied
by a high ratio of False Positives (FPs) and False Negatives (FNs), which limits their uti-
lization in real-world scenarios. In addition, major challenges and open issues exist for
IDS [2–4], such as producing an unmanageable amount of alarms, which are overwhelming
for human experts, especially when they are erroneously classified as attacks. Coping
with the increasing data volume challenge and enhancing the detection capability from a
more global perspective, the concept of collaboration for IDS emerged, which deploys a
multitude of collaboratively communicating IDS with a central alert correlation unit or with
each other. Alert correlation is a common practice with aims such as false alert reduction,
attack pattern identification, root cause detection of attacks or prediction of future attack
steps by processing alerts from the heterogeneously applied IDS. Furthermore, they aid to
reduce the sheer unmanageable number of events (alarm flooding) generated, especially
with the continuously growing amount of high-dimensional data, which can no longer
be handled by human analysts. However, limited work exists for alert correlation that is
able to efficiently process alerts in a streaming fashion. In addition, most of the existing
solutions assume nearly 100% confidence of alerts mapping an attack, which mainly applies
for misuse-based IDS. This means that generated alerts based on a signature-match contain
very precise information with high confidence about the attack or single attack step (of a
multi-stage attack) due to the incorporation of existing knowledge. The reason for this is
that alerts are typically composed of intrinsic attributes, such as timestamp, source and
destination IP or port information, and an alert type field, often referred to as attack class
or intrusion type, which specifies or encodes the attack. In this work, we denote an attack
scenario as a single-stage attack, while attack campaigns are multi-stage attacks. Similar
attack scenarios are called an attack category. Attacks detected by misuse-based IDS are
denoted as the intrusion type or class.

Unsupervised Outlier Detection (OD), as part of anomaly-based IDS methods, detect
abnormal behavior by monitoring significant deviations from what has previously been
seen under the viewpoint that outliers, indicators rooted from attacks, are statistically
different from normal data with a significantly smaller ratio and do not happen frequently.
According to [5], the most dangerous attacks happen only rarely such that OD will seem-
ingly play a crucial role in future network security. However, by only detecting such
outliers as deviations from data attributes, e.g., a newly occurring IP-address in a computer
network, the attack recognition ability is significantly limited since processed data, in the
worst case, are only assigned a simple label of normal or abnormal. Since alerts consist of
various attributes, further information must be gained from OD methods to be applied in
alert correlation. However, due to the missing knowledge of known attacks, the alert type
information cannot be provided by OD methods.
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With the ubiquity of SD across multiple domains in different real-world applications,
many online unsupervised OD algorithms have been developed in recent years. Those are
able to efficiently process the time-varying data streams one-pass at a time while dealing
with phenomena, such as concept drifts, which require timely model updates to counteract
accuracy loss if data change as time passes. With online OD algorithms, alerts can be
generated in a streaming manner and lead to a dynamic, huge, infinite and fast changing
alert stream for which conventional offline alert correlation methods are not designed [6].
Thus, similar to the statement in [7], when it comes to some critical streaming applications,
whereby a fast but less accurate OD model is preferred, we strongly support the claim by [6]
that it is more significant to detect an on-going attack in a timely manner than analyzing it
afterwards in an offline fashion. Detecting attacks at an early stage significantly reduces
damage since, even when applying advanced detection systems, sophisticated attackers
can nest undetected for up to 100 days [8].

Thus, as the main contribution of this article, we propose the so-called Streaming
Outlier Analysis and Attack Pattern Recognition framework, denoted as SOAAPR. It
is able to process the output of locally and autonomously or distributively operating
online OD methods by equipping them with an alert generation functionality using the
Intrusion Detection Extensible Alert (IDEA) (https://idea.cesnet.cz/ (accessed on 7 June
2021) representation enriched with information that aid alert correlation. Aggregated
alerts (of the same outlier event) are fused into meta-alerts for the sake of alert reduction,
which are subsequently correlated and clustered in a streaming fashion. Clusters that are
considered complete are immediately forwarded to ensure a very low response time for
security analysts. A recent and innovative approach [9] is incorporated that, when triggered,
transforms the reduced alert clusters, potentially representing an attack scenario, into a
graph representation to derive motif signatures that capture the attack’s communication
relation, denoted as sigcom in this work. Two more signatures proposed by us, sigattr
and sigtemp, capture an attack’s expression in the data’s features and the time sequence
pattern of the attack-related alerts. Those fingerprint-like characteristics allow a privacy-
preserving sharing of a novel attack pattern, e.g., utilizing the Structured Threat Information
eXpression (STIX) (https://oasis-open.github.io/cti-documentation/ (accessed on 7 June
2021), similar to shared signatures of misuse-based systems. A common problem with this
type of IDS is that if similar attacks slightly change, the knowledge base may not be able to
detect it any more [10]. However, the benefit of our signatures is that they represent the
attack behavior instead of specific intrusion types/classes and can thus be used to identify
completely novel attacks with similar behavior from the same attack category.

Our experiments with the popular, security-related CICIDS2017 and CSE-CIC-IDS2018
datasets indicate that SOAAPR is able to reliably correlate alerts of a variety of attack
scenarios and, in contrast to the offline competitor Graph-based Alert Correlation (GAC)
that is also able to deal with the outcome of OD algorithms, takes notably less processing
time. Furthermore, we compare the three signatures, sigcom, sigattr and sigtemp, in terms of
their computational requirements and capability to characterize attack scenarios.

This work offers the following contributions and mainly differs from others presented
in Section 2 because, to the best of our knowledge:

• SOAAPR is the first framework that exploits the output of online OD algorithms to
mine attack pattern information in a streaming fashion.

• Online OD algorithms are equipped with an alert generation functionality that can
be used for alert processing, including timestamp, feature scoring causing the out-
lierness (root cause) and equally normalized outlier score results utilizing a common
format—IDEA.

• Two more novel types of fingerprint-like signatures, apart from sigcom, are introduced,
sigattr and sigtemp, which can be used to characterize and compare attack patterns.

• Attack scenario information in the form of a signature-tuple can be shared in a privacy-
preserved way generated from a novel attack pattern utilizing the STIX language.

https://idea.cesnet.cz/
https://oasis-open.github.io/cti-documentation/
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The remainder of this work is organized as follows. Section 2 provides relevant
background information regarding unsupervised OD on SD, as well as aspects of alert
correlation, and provides related work with the most popular state-of-the-art solutions for
alert correlation with respect to (i) outlier detection and (ii) streaming alerts. In Section 3,
details on the conceptualization and operation principle of SOAAPR for streaming outlier
analysis to identify attack pattern can be found. It contains a detailed description of the
major modules for streaming alert correlation and generation as well as a comparison
functionality for all three types of signatures. In Section 4, the evaluation methodology is
described along with details on the data sources and the evaluation criteria. The discussion
of results (Section 5) is split into two major parts. Firstly, the streaming alert correlation
from SOAAPR is compared to the competitor GAC, and, secondly, the results, evaluating
the signature generation and comparison, are discussed. The conclusions are drawn in
Section 6, along with a glance at future work.

2. Related Work
2.1. Aspects on Unsupervised Online Outlier Detection

OD, which is also referred to as anomaly or novelty detection, identifies atypical pat-
terns that significantly deviate from the norm utilizing a given measure. Their prerequisite
is that (i) the data is imbalanced meaning that outliers represent the minority compared to
normal data, (ii) that outliers are distinct, i.e., they are statistically different from normal
data and (iii) that outliers are rare, which means they do not happen regularly. A broad
spectrum of techniques for OD exists, which are most commonly statistic, distance, cluster
or density-based. Other methods, including their properties, are discussed in [11,12].

As already pointed out, in particular, the missing ground truth values in evolving
(theoretically infinite) data that demand real or almost near real-time processing, taking
the evolution and speed of data into account, require unsupervised OD methods capable
of dealing with SD. We consider OD on SD, as is the context in [13]. Widely accepted and
popular solutions, such as Hoeffding Trees [14] or Online Random Forests [15], achieve
good accuracy and robustness in data streams [16] but are not designed to operate on
unlabeled data. Over the past couple of years, methods have been proposed that satisfy
the unsupervised and online requirement, such as [17–19], but just a few, Isolation Forest
(iForest) [20], HS-Trees [21], RS-Hash [22] and Loda [23], have been shown to outperform
numerous competitors and are therefore regarded as state of the art [24,25]. Even if iForest
was originally intended as an offline algorithm, a handful of variants, such as [16,26–29],
have been proposed that are adapting it or are taking advantage of its concept to operate
on SD.

With respect to our proposed SOAAPR framework, referring to Section 3, we are
mainly interested in two functionalities of online OD algorithms. Firstly, for instance, to deal
with FP, OD should provide outlier score values instead of simple binary values. Secondly,
finding the actual root cause of incidents is still an open challenge for IDS. The importance
of the features of the input data can play a major role when it comes to analyzing detected
outliers. Thus, OD algorithms are required that are able to score or rank features according
to their contribution to a data instance’s anomalousness. The former criterion is fulfilled by
all of the aforementioned algorithms, although their scoring range differs. For instance,
while Isolation Forest’s scoring takes values from [0, 1], Loda yields values from [0, ∞).
Referring to the second criterion, to the best of our knowledge, only Loda and the adaption
of iForest for SD, PCB-iForestIBFS, proposed in [13], provides by design the functionality
to measure the statistic significance of each feature to its contribution to a data instance’s
scoring result in an unsupervised manner. From a supervised perspective, the Random
Forests (RF) [30] algorithm, for which an online variant also exists [15], can provide
feature importance scoring functionality using the SHapley Additive exPlanations (SHAP)
method [31]. This method is founded on the so-called Shapley values, which provide an
explanation of a prediction by computing the contribution of each feature to the prediction—
a method from the coalitional game theory.
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2.2. Aspects on Alert Correlation

Salah et al. [32] and Hubballi et al. [33] provide a comprehensive overview in the field
of alert correlation, which is defined as a measure of the relation between multiple alarms
such that new meanings can be assigned to them. Thus, not only the verification of the
alerts’ validity can be performed but complex attack scenarios can also be identified. Alert
correlation techniques try to reconstruct the attack scenarios from alerts that may exhibit
an attack that involves multiple stages in compromising a network [34]. Further, they aid
the time-consuming and error-prone security investigation by significantly reducing alerts
by dropping irrelevant ones or grouping them based on logical relations.

A taxonomy of alert correlation techniques is provided in [32], including the number
of data sources, correlation methods and types of architectures used in the correlation
process. Alert correlation architectures can be categorized into centralized (data collection
performed locally and reported as alerts to a central server executing correlation analysis),
distributed (alerts or high-level meta-alerts are exchanged, aggregated and correlated in a
completely cooperative and distributed fashion between equally weighted agents; commu-
nication is performed using a peer-to-peer protocol) and hierarchical architectures (separates
correlations into hierarchical layers of local analysis, regional analysis and global analysis).
The number of data sources—single or multiple—clarifies whether the alert correlation
method is sourced by either a single data source, e.g., a database or a single security mea-
sure, or by a collaborative set, which allows for a more precise and coherent view about the
observed system. In general, correlation methods can be subdivided into similarity-based,
sequential-based and case-based ones, whereas the authors of [34,35] introduce, apart from
similarity-based and case-based (referred to as knowledge-based), statistical-based methods
and hybrid approaches.

This work focuses on a streaming alert correlation for the identification of novel attack
patterns suitable for application on online OD algorithms. Thus, we further split related
work into two parts since—to the best of our knowledge—no work exists that has yet
been tailored for this task. Therefore, we first present related work that deals with the
alert correlation for OD (but offline) and, second, work that deals with the streaming alert
correlation (but designed for misuse-based IDS).

2.3. Alert Correlation for Outlier Detection

Bolzoni et al., in [36], formulated the problem: when an anomaly-based IDS raises
an alert, it cannot associate the alert with an intrusion type/class, mostly mandatory for
alert correlation. Anomaly-based IDS can only provide little information, such as the IP-
addresses and port information, and in addition, a security analyst might add the intrusion
type or class label but only in a laborious manual analysis process. Thus, the authors
proposed Panacea [36] in order to automatically classify attacks utilizing a supervised
Support Vector Machine learning model. It inspects the payload of data instances and
searches for unusual novel patterns, e.g., byte sequences of certain intrusion types by
leveraging previously learned information. The intrusion type can be assigned by finding
the most similar alert payload. However, Panacea is payload-centered, which hampers the
application for certain attack categories, such as Portscan or DDoS, not involving malicious
payload content. Further, it requires training data which, particularly for attack-payload, is
typically not available and faces problems when dealing with payload-encrypted traffic.

With a different focus on filtering false alarms, the work in [37] addresses the issue
that reported alarms from anomaly-based IDS also lack rich information. They may only
identify the anomalous connection stream but cannot provide intrusion type or class
information. Their proposed framework is composed of the feature constructor, the cluster
constructor and the so-called simple best fit cluster (SBFS) in order to monitor the generated
alerts from an anomaly-based IDS. The feature constructor extracts network traffic flow
information and derives certain metrics used to construct clusters of normal alarm patterns
in a training phase utilizing the cluster constructor. Incoming alerts from an anomaly-based
IDS are then evaluated in the SBFS module incorporating information from their respective
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network traffic flow features if deviations from the trained model occurred. However,
the main intention of this work is not the identification of a novel attack pattern but rather
the reduction of anomaly-based IDS outputs.

An approach that detects multi-stage attacks in an unsupervised way without details
on single-stage attacks is proposed in [38]. Since the authors state that conventional
multi-stage attack detection is designed for misuse-based IDS, which are leveraged for
single-stage attack detection, their proposal is designed to operate on both signature and
anomaly-based IDS alerts. The main idea of the approach is that suspicious flows are
generated, clustered and labeled in the rule generation phase. Labeling in this phase
means that the intrusion type or class labels are assigned to each cluster. According to [39],
the assignment of clusters to corresponding attack stages still needs to be investigated.

A recent work [39] proposes Adept, a distributed framework, to detect individual
attack stages in order to uncover a coordinated attack in the IoT security domain. Anomaly
detection is performed on the network traffic of IoT devices, and potential anomalies
are sent to a security manager. It will aggregate and mine alerts using a method called
frequent itemset mining (FIM). The resulting alert- and pattern-level information will be
supplied to a ML approach to identify the individual attack stages. However, the attribution
of incoming alerts to different attack stages is performed using a supervised approach,
in particular, leveraging k-Nearest-Neighbor, RF and Support Vector Machine. Furthermore,
their extraction and identification of attack patterns is founded on a simple anomaly
detection method designed for the needs in the IoT domain. Thus, common state-of-the-art
off-the-shelf anomaly detection methods are not compatible with Adept.

A promising generic graph-based alert correlation solution, denoted as GAC, is pro-
posed by Haas et al. in [40]. Since it only relies on the alert attributes IP and port of
source and destination it can be exploited to correlate alerts generated by anomaly-based
IDS. GAC is composed of three building blocks: alert clustering, context supplementation
and attack interconnection. For alert clustering, similarities between each of the alerts are
computed by attribute-specific comparison functions. Then, a so-called attribute graph
is derived with alerts as nodes and their similarity values as weighted edges. In leverag-
ing community clustering, in particular, the Clique Percolation Method, loosely coupled
clusters can be extracted from the attribute graph that potentially contain alerts of a single-
stage attack scenario. Context supplementation then transforms the resulting clusters
into a graph—flow graph—that characterizes the communication patterns between the
alerts. From the resulting flow graph, four different attack categories can be identified
depending on the communication relation between attacker(s) and victim(s). The last
block, attack interconnection, aids in identifying multi-stage attacks by revealing relations
between individual attack scenarios by comparing the set of attackers and victims of each
attack cluster.

In a subsequent work [9], the authors proposed a more flexible solution than context
supplementation by assigning clusters to one of four attack categories: one-to-one (oto),
one-to-many (otm), many-to-one (mto) and many-to-many (mtm). The so-called motif-
based approach builds upon the alert clustering stage from GAC or any other method
that groups alerts into clusters, potentially reflecting attack scenarios. Then, if clusters
are obtained, a communication structure graph is derived by the IP-address and port
information extracted from the alerts in the clusters. Thereby, the communication relation
of who attacks whom and which ports are relevant for an attack are reflected in a directed
graph structure. A fingerprint-like characteristic can be extracted from the graph by
leveraging a concept called motif signatures. These are different characteristic sub-graphs,
e.g., three nodes with 16 possible edge patterns among them, whose occurrence in the
graph represents a motif signature. Network motifs were initially proposed by [41] and
have been transferred to the security-domain, as discussed in [9]. However, the application
of network motifs in [9] is transferred for the characterization of attacks and allows a
fine-grained, privacy-preserving and dynamic generation of signatures for a multitude
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of known and unknown attack scenarios, as well as the differentiation and comparison
among them.

2.4. Streaming Alert Correlation

A real-time correlation of intrusion alerts is proposed by Wang et al. in [42]. It requires
alerts that contain the intrusion type and relies on a vulnerability-centric correlation that
maps exploit information and its vulnerability relation with alerts. Hence, the focus of
the solution is on multi-stage attack detection, and by its so-called Queue Graph (QG)
approach, it is able to counteract the limitations of sliding windows prone to be tricked
by adversaries. Using an extension of the QG, the attack graph based approach is able to
hypothesize missing alerts and predict future ones.

Ma et al., in [6], propose a real-time system that automatically discovers attack strate-
gies from evolving alert streams. They leverage a well-known streaming clustering method,
called CluStream [43], that is designed with an online and offline module and replaces the
latter with an alert correlation component. The online module is used to generate high-level
alerts, hyper-alerts, that maintain statistics from the streaming alerts, summarizing their
characteristics over different time periods. Alerts must feature, among other attributes,
the intrusion type denoted as SigID, which is obtained by misuse-based IDS. Signature-like
characteristics can then be derived by the assumption that a multi-stage attack of the
same type typically happens in a certain time span and the sequence of their hyper-alerts
is similar.

A framework for incremental frequent structure mining is proposed in [44] that aggre-
gates alerts into structured communication patterns depending on the connectivity-relation
of involved hosts: mto, otm and mtm. The frequency of those patterns is mined from the
streaming alerts and is considered finished if it is not changed for a user-definable amount
of time. From those patterns, a so-called Frequent Structured Pattern Tree, FSP_Tree, is cre-
ated that encodes the most significant patterns along with their time-sensitive information
in a Pattern Tree.

Ren et al. in [45] propose an online alert correlation using two components. In an
offline module, a Bayesian correlation approach is utilized to extract causal relations
among alert features. Based on those patterns, the relevance of alerts for attack steps can
be analyzed, which will be stored in a Correlation and Relevance Table. Those reference
tables can be consulted if new alerts stream into the online module of the system to
uncover multi-step attacks. Again, the intrusion type/class field of an alert plays a crucial
role and additional alert features must be derived in order to form hyper-alerts of the
same type. However, as mentioned by Sundaramurthy et al. in [10], the approach by
Ren et al. can only learn and detect the type of attacks that previously occurred. Therefore,
Sundaramurthy et al. proposed a slightly different approach, which is knowledge-based
but works on the knowledge of an attacker’s intention and constraints rather than attack
specifics. Thus, they use a semantic model that maps potential meanings to alerts without
incorporating types of attack scenarios.

A real-time method, denoted RTECA, is proposed in [46] that extracts so-called critical
episodes, which are sequences of alerts that could be part of multi-step attack scenarios.
Thus, their framework aggregates alerts, including their intrinsic attributes with the in-
trusion type and attack severity information in order to generate hyper-alerts and merge
similar alerts together. The timely sorted alerts are categorized in larger parts, batches,
each divided into smaller parts, called episode windows. The framework is composed of
an online and offline module. In the former, an online attack tree is generated based on
the alerts, and the steps of multi-step attacks are determined. In the offline phase, alert
similarities are computed, and an offline attack tree is generated by the alerts of critical
episodes in order to learn multi-step attack scenarios.

Utilizing an offline and online module too, Daneshgar et al. in [47] proposed a method
that clusters alerts as fuzzy events according to their similarities and historical events,
which are obtained from the offline module, in an online manner. A fuzzy frequent pattern
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mining module in the offline phase mines for relations based on statistical characteristics
between alerts to extract fuzzy patterns. The resulting correlation strength can, in turn, be
taken into account for the similarity measure utilized in the fuzzy clustering.

Zhang et al. in [48] proposed a framework named IACF, which stands for Intrusion
Action-Based Correlation Framework. Its components, split into an extraction and model-
ing phase, cover alert normalization, action extraction, session rebuilding and building,
as well as updating a correlation graph. Actions in this work refer to a set of alerts po-
tentially indicating a single-stage attack. Subsequently, sessions are a sequence of actions
that represent the association relation between actions based on temporal metrics. IACF
is able to prune sessions in order to remove redundant actions, fuse them and construct
a correlation graph, which can be utilized to predict future attack steps. In a consecutive
work [5], the authors leverage the Hierarchical Temporal Memory (HTM) algorithm for
online intrusion scenario discovery and prediction. Again, normalizing alerts is the first
step before hyper-alert processing is performed by online clustering, session reconstruction
and session encoding. Alerts are clustered by computing the similarity of the types field in
an online manner. Similarly to IACF, sessions are reconstructed and encoded in order to
feed the HTM online learning as part of the intrusion scenario discovery module. HTM
learns the patterns, predicts potential next steps and scores anomalies. Outcomes of the
HTM are used to update a correlation matrix representing the correlation strengths between
actions from which potential future attack paths can be extracted.

2.5. Delimitation from SOAAPR

Inspired by the above literature, this article transfers and improves methods for
aggregation, (streaming) clustering and attack categorization in the field of attack pattern
mining by only utilizing the outcome of OD algorithms. To better guide the reader,
a delimitation from SOAAPR to related work is given in this section.

Regarding the fusion of alerts of multiple IDS sensors in order to derive high-level
alerts with strong confidence about the mitigation of FP and FN, our alert preparation
module in SOAAPR works similarly to the aggregation component in RTECA [46]. Both
approaches fuse similar alerts based on the concept of attribute similarity. However, RTECA
strongly relies on alert type and attack severity information, which is not present when
operating on anomaly-based IDS. Thus, we take advantage of additional OD functionality
incorporating the outlier score and feature contribution of a data instance leading to an
alert generation. Furthermore, as used by [6], similar alerts can be fused if they have only
minor temporal differences. SOAAPR differentiates between two cases in which either
alerts are obtained from multiple algorithms running in parallel on one system or from
multiple distributively operating ones.

In terms of clustering for anomaly-based IDS, GAC’s clustering solution [40] is most
related to SOAAPR. However, our approach differs in various ways. Since working on a
finite set of alerts, it might be difficult for a security operator to choose an appropriate point
in time when to start and end recording alerts, which will be fed to GAC. If the recording
time is too short, an attack might not yet be finished, and further attack-related alerts are
not included. If the recording time is too large, the GAC approach consumes considerable
resources. This has been discussed in their work and was mitigated by chunk-based
processing in which the alert data set is divided into smaller chunks that can be efficiently
computed by GAC. Doing this might split the alerts of an attack scenario into two chunks.
Furthermore, if no chunks are considered and no notion of time through alert timestamps
is incorporated, it is very likely that alerts with similar attributes that have no temporal
dependency and are from different attack scenarios might be clustered together. SOAAPR
only mines for temporally “unique” attack stages by taking the timestamp information into
account. Furthermore, it automatically checks whether a cluster is completed such that no
old alerts get correlated into a recent cluster. Considering parametrization, GAC suffers
from choosing the parameter k, searching for fully connected sub-graphs of size k within
the community clustering and a suitable threshold τ providing a minimum similarity value
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between alerts. The former allows the assignment of alerts to multiple clusters such that
resulting clusters may potentially contain alerts of unrelated attacks. For SOAAPR, we
assume that each alert can only be assigned to one cluster, and we handle the confidence of
alerts in a designated alert preparation stage. Furthermore, instead of having a minimum
similarity threshold on the alert level, SOAAPR assigns alerts into clusters with the highest
overall similarity. Having a minimum similarity on a cluster level makes it more robust to
fluctuations in the alert attributes.

With respect to streaming alert clustering, competitors mainly focused on multi-stage
attack detection by correlating alerts enriched with the intrusion type and assuming that
raised alerts correspond to a single-step attack. Therefore, streaming solutions are mainly
designed for the application of misuse-based IDS. The incremental frequent structure
mining approach in [44] is similar to our SOAAPR by creating frequency patterns of alerts
as potential attack scenarios, i.e., single step attacks, and only incorporating IP-address
information. However, our approach differs in various ways. Largely comparable to those
patterns, the clusters in SOAAPR are obtained by more flexible comparison functions,
allowing for the consideration of various alert attributes. Problems with the temporal han-
dling of patterns, stated in the outlook of [44], are slowly developing patterns with large
delays in between the steps and the fixed Keep_Active parameter used to decide when a pat-
tern is considered “stable”, i.e., finished. By assigning individual and cluster-characteristic
time values, SOAAPR is more flexible when determining a cluster as “saturated”, i.e., fin-
ished. Additionally, requiring a mining interval time in which every x minutes the pattern
tree structure is updated makes it possible for an adversary to perform an attack unnoticed
within this time span.

Attempts for discovering novel single-stage scenarios as part of multi-stage attacks
are given by RTECA in [46] while mining for critical episodes. However, although stating
real-time operation, processing is only started when a window is completed. In contrast,
for SOAAPR, each alert is processed immediately, and no window needs to be filled.
Aggregated alerts in RTECA are merged by utilizing the intrusion type and attack severity
attributes. Our approach dispenses this information and leverages attributes that can be
provided by OD algorithms. Although similarity functions in RTECA used to update the
correlation matrix are similar to ours, the online clustering process in SOAAPR is more
efficient compared to the online attack tree generation when considering the processing of
each newly arriving alert.

The online fuzzy clustering module used in [47] operates most similarly to the cluster-
ing in SOAAPR. It exploits a common approach that similar alerts belong to an existing
pattern (in our approach a cluster) whose similarity degree is high or triggers the genera-
tion of a new pattern in the case that existing ones are not sufficiently similar (minimum
threshold of similarity). The fuzzy clustering approach also considers the notion of time,
which strengthens our approach introducing a "time to live" for each cluster. However,
the threshold used for the lifetime of patterns is one timing constraint, which might be
exploited by a strong adversary performing its attack until the lifetime is not exceeded.
SOAAPR provides two timing constraints that prevents such attacks and also takes care of
ensuring new alerts are not added to an existing cluster if the cluster’s temporal existence
is outdated. However, contrary to SOAAPR, this time difference is part of the similarity
functions, which makes its threshold less intuitive for the operator. The parameter tuning
is discussed by the authors in their conclusion, and some parameter improvement is part
of further work. A membership degree in the fuzzy patterns can be compared to the
outlier score values of each alert representing an alert’s confidence as part of a cluster.
Although not relying on the intrusion type attribute, and thus not adaptable for OD, it is
designed and evaluated using alerts from misuse-based IDS.

With their recent work, Zhang et al., in [5,48], proposed real-time intrusion scenario
detection methods. With IACF, alerts streaming in real-time are grouped into actions
based on the similarity of the intrusion type and destination port. The former strongly
requires existing knowledge, such as using misuse-based IDS, which is a major difference
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to SOAAPR and our clustering, where the comparison functions is less strict but does not
allow duplicate actions because of duplicated alerts or FP. Timely formed sessions from
a sequence of actions are then split by a similar method used in SOAAPR to determine
saturated clusters. However, we compute the discreteness of time intervals between alerts
instead of actions on a session level in IACF. Furthermore, for the sake of reducing the
impact of FP, the pruning algorithm might also filter out single-stage attacks. We deem
this step as critical since we support and transfer the statement in [7] for OD-based alert
correlation that, especially for critical streaming applications, it is more important not to
miss critical TP anomalies forming a single-stage attack while accepting a certain rate of FP.

In terms of attack characterization, we see the huge potential of generic signatures
derived from attack characteristics, as proposed by the motif-based approach in [9]. Thus,
we evaluate the applicability of those communication-related fingerprints and extend them
by considering feature attributes and a temporal behavior also potentially characterizing
attacks since we deem the communication relation of attacks as not the only and best option
to characterize attacks.

Contrary to the mined patterns in [44], SOAAPR provides a more unpredictable,
cluster-specific generation of signatures. The mentioned high number of FP patterns is
not surprising when dealing with alerts that do not state high confidence and map to
a single attack step. SOAAPR will also likely be suffering from FP clusters due to the
impossible prevention of FP and FN alerts in real-world applications and its time-specific
online clustering approach. However, SOAAPR provides signatures from clusters that
can be compared among each other or with ones previously stored as knowledge base,
subsequently allowing for a deeper analysis by a human operator.

The derived candidate attack sequence patterns from the approach in [6] are composed
of hyper-alert sequences within a certain time span, which characterize a multi-stage attack.
Due to the different lengths of those patterns, a comparison with others is impeded and
hyper-alerts still contain privacy-relevant information, such as IP-addresses. The intrusion
scenario construction phase in IACF [48] derives correlation graphs extracted from pruned
sessions. However, as stated by the authors in the conclusion, the generated graphs are
not very intuitive for human analysts. This is because sessions are decomposed into
binary correlations of sessions. SOAAPR generates comparable, fixed-sized signatures
in which similarity scores can be computed. Furthermore, those signatures are free from
privacy-relevant information and can be shared with others. Signatures in our approach
represent single-stage attack scenarios and not multi-stage attacks. However, by chaining
our signatures, multi-stage attack comparison is also possible. Furthermore, depending on
the attribute intrusion type, the authors’ more recent work [5] performs online clustering
in a similar manner as SOAAPR but clusters actions into clusters with high similarity
of the type field. This makes the framework highly dependent on existing knowledge,
for instance, obtained from alerts generated by misuse-based IDS.

We want to note that much of the alert correlation work, e.g., [49], which relies on
misuse-based IDS, assumes that raised alerts can be treated as an attack, i.e., single-stage
attack or attack step. Based on those assumptions, a lot of work exists that identifies multi-
staged attacks by analyzing those alerts. However, SOAAPR significantly differs from those
by assuming that raised alerts from anomaly-based IDS, specifically by OD algorithms
in this work, only represent indicators of potential known or unknown attack scenarios,
i.e., single-stage attacks. By equipping OD algorithms to produce enriched alerts, SOAAPR
mines alerts to identify those attack scenarios. Additionally, OD algorithms have their
limitations when identifying a broad spectrum of attack scenarios based on the assumption
that outliers are rare, distinct and do not happen frequently compared to normal data.
Thus, it is difficult to produce alerts for the whole duration of long-term attacks with a
massive amount of data, such as DoS-like or Brute Force, since online OD algorithms might
adapt to them by supposing a concept drift. Furthermore, for attack detection using OD, it
is assumed that detected outliers are indicators for maliciously triggered events although
potentially being only an anomalous event rooted in a non-malicious fault, for instance.
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Intentional masking and swamping that might blend OD, as discussed in [50], are also not
considered. Rather, with this work, we would like to point out that identifying the attack
pattern from OD can work to a certain extent, but in real-world applications, we strongly
suggest to leverage a hybrid system of anomaly- and misuse-based IDS. Although the
intention of SOAAPR is highly ambitious, the approach is confirmed since real attacks
are more likely small probability events, and the most dangerous attacks only happen
rarely [5,51]. This so-called "rare data problem" is the case for which OD algorithms are
especially predestined.

3. Streaming Outlier Analysis and Attack Pattern Recognition
3.1. Operation Principle

The workflow and operation principle for Streaming Outlier Analysis and Attack
Pattern Recognition, denoted as SOAAPR, is shown in Figure 1. One may utilize SOAAPR
in conjunction with online OD algorithms in two different interaction modes depending on
the network infrastructure and the available resources. On the one hand, online OD can be
performed self-sufficiently on a single system applying multiple OD algorithms in parallel,
denoted as single system—multiple algorithms. The amount of algorithms in parallel depends
on the available resources of the single system. All algorithms perform OD on the same data
instances (data points) xt with dimension d of the data stream {Xt ∈ Rnt×d, t = 1, 2, . . .}.
The continuous transmission of data records arrives sequentially at each time step t in which
the count of features is denoted as d (dimension) and xt the nt-th d-dimensional most recent
incoming data instance at time t. The feature set of Xt is denoted as F = { f1, f2, . . . , fd}.
Alert Generation and Alert Preparation can be performed locally on the single system after
each classifier yields its result, either a TP or a FP. For a greater extent of visibility across
larger network infrastructures, collaboratively operating IDS sensors have found their
way into alert detection or alert correlation. Therefore, on the other hand, SOAAPR is
able to deal with multiple self-sufficiently working online OD algorithms, denoted as
multiple systems—single algorithms. Each distributively or decentrally applied algorithm
in the network infrastructure operates on data instances xt, yt or zt from different data
streams Xt, Yt and Zt. Alert Preparation in this interaction mode is performed by SOAAPR.
A combination of both interaction modes, denoted as multiple systems—multiple algorithms,
is also possible. Thus, Alert Preparation must be performed on both the multiple single
systems utilizing multiple online OD algorithms and within SOAAPR processing the
streaming alerts.
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Figure 1. Flowchart and Operation Principle of Streaming Outlier Analysis for Attack Pattern Recognition.

Alert instances at from the stream {At ∈ Rmt×l , t = 1, 2, . . .}, generated by either a TP
or a FP, are streaming into SOAAPR at each time step t, in which the count of attributes of
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at is denoted as l and at = {a1, a2, . . . , al} the mt-th l-dimensional most recent incoming
alert at time t. Within SOAAPR, a Buffer is used to temporarily store alerts for the Streaming
Alert Correlation / Clustering. No longer required alerts, e.g., from unusable clusters, will
be flushed by the Discard Alerts and Clusters module. The Trigger Signature Generation
component monitors the evolving clusters C(t)

i from the set C(t) and triggers the Signature
Generation from suitable clusters, ideally representing an attack or step of an attack, denoted
as the attack scenario S(t)

i from the set S(t), in order to create three types of signatures

denoted as sig(t)<type>.
Further processing of the generated signatures depends on two operation modes—

Runtime and Learning—based on whether an existing knowledge base is available or not.
In the Learning phase, generated signatures can—if desired—be clustered according to their
similarity and are presented to a human analyst. Instead of a massive amount of alerts
generated without applying SOAAPR, the expert must only analyze a reduced amount
of alerts already preprocessed in a set clustered as C(t)

i and ideally corresponding to the

attack scenario S(t)
i . In the case of a true attack scenario, the expert condenses information

about the attack scenario using STIX and attaches the respective signature sig(t)<type> to
it. Since the resulting knowledge of the attack scenario only consists of fingerprint-like
attack-characteristic information, free of privacy-relevant or confidential data, such as
in-house IP-addresses. Thus, it can be shared in a cross-company manner. Having a
knowledge base established, in the Runtime phase, generated signatures can be compared
within the Scenario Comparison module by calculating similarity values. This way, one can
take advantage of the strengths of misuse-based signatures with their fast, efficient and
reliable attack identification capability but surpasses it via its ability to identify completely
new, yet unknown, attack scenarios by being similar to known scenarios (from the same
attack category) with a similar pattern. In the following, the core components of SOAAPR
are discussed in more detail.

3.2. Alert Generation and Preparation

An OD algorithm OD(·) : xt → f (xt) assigns either a class label as given by f (xt) ∈
{normal, abnormal} or a score value f (xt) ∈ R, describing the strengths of anomalousness,
for each data object in Xt . Score values carry more information and aid the Alert Preparation,
for instance, by dealing with FN. Thus, Alert Generation creates alarms utilizing the IDEA
format for instance by enriching the intrinsic alert properties such as timestamp, IP-address
and port source and destination information with (i) a normalized value of the outlier
score and (ii) the respective top-γ-features mainly causing the outlierness as the subset
FS = { fi1, fi2, ..., fiγ} ⊆ F .

We deem (i) crucial when combining multiple OD algorithms with different scoring
functions since, for instance, algorithms such as Kitsune [18] or Loda [23] score instances
higher the more abnormal they are within their model, f (xt) ∈ [0, ∞) . This impedes
setting a unified threshold value across all applied OD algorithms, in particular, when they
operate on different hyperparameter sets. As an example, Loda utilizing two alternating
sets of histograms with different window sizes will yield different averaged score values
due to the different state of knowledge about normal data. With increasing window sizes,
the models become more accurate while incorporating larger amounts of normal data
instances, which, in turn, are then scored less compared to models obtained from smaller
window sizes. We suggest normalizing the outlier scores using an improved version of
the Gaussian Scaling proposed by [52], in which the mean µ and the standard deviation σ
are used to encounter the aforementioned problems. Since µ and σ work well for normally
distributed values, i.e., assuming a normal distribution of the outlier scores, we replace
them by the median med and the median absolute deviation mad because they are a better
option for distributions with skewness.

Figure 2 depicts an exemplary distribution showing non-negative (positive) skewness
of the Loda online algorithm utilized on the fourth CSV file of the security-related UNSW-
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NB15 [53] dataset. It clearly points out the difference between the mean and median caused
by the unequal ratio of outliers. Thus, the normalization formula leads to Equation (1),
where er f () is the monotone and ranking stable Gaussian Error Function, and medt and
madt are moving or rolling variants of the median and median absolute deviation to be
applied in a streaming fashion.

f̃ (xt) = max{0, er f (
f (xt)−medt

madt
√

2
)} (1)

Applying this formula will translate the arbitrary outlier score values in the range [0, 1]
into interpretable values describing the probability of a data instance being an outlier. Using
domain expertise, a reasonable threshold can be determined over runtime, yielding a decent
classification performance that assigns a binary value from the set {normal, abnormal} for
each f̃ .
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Figure 2. Exemplary Loda outlier score values including the mean and median.

In terms of Alert Preparation, it must be distinguished between the modes single system—
multiple algorithms and multiple systems—single algorithms. In general, Alert Preparation
helps to reduce FP as well as FN by exploiting the strengths of multiple classifiers sending
their alerts. For single system—multiple algorithms, the classifier processes the same data
instance from the stream Xt in parallel; thus, feature interpretability (additional alarm
attribute (ii)) is not mandatory since it can strongly be assumed that resulting outliers
from the same data instance are caused by the same feature deviating too much from
normal behavior.

However, having multiple systems—single algorithms, with the feature information
causing the outlierness, alerts can be assigned to the same event but from different stream
perspectives, e.g., Yt or Zt, considering the timestamp information as well. Even in the
distributed case, an attack might cause outliers close in time to be detected by the classifiers,
which subsequently generate alerts. If the classifiers are able to determine the features caus-
ing the outlierness, those alerts can be mapped to the same event with high confidentiality
whose γ most contributing features have high similarity. Independent of the interaction
mode, alerts generated from detected outliers of the same event (data instance) by multiple
classifiers can be fused together to reduce the amount of alerts that SOAAPR needs to
process (alert filtering). We suggest deriving meta-alerts that summarize the multiple
alerts generated by the classifiers for the same event. Having the same alert attributes in
terms of IP-address and port source and destination information with timestamps close
in time (and highly similar respective features causing the outlierness for the multiple
systems—single algorithms option) but with different normalized outlier score values, those
alerts can be mapped to a single meta-alert. The normalized outlier score values (additional
alarm attribute (i)) are combined by f̃meta = ∑i gi f̃i into a meta-outlier score depending
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on potentially additional weights gi for each classifier, where ∑i gi = 1 and f̃meta ∈ [0, 1]
applies. For the sake of simplicity, we assume equal weights in the following.

Table 1 shows an example of five online OD algorithms classifying five data instances
with ground truth {normal, normal, abnormal, normal, abnormal}. Further, we assume an
anomaly threshold of >0.5, which triggers the generation of alerts by each classifier. A nor-
mal data instance can either be a True Negative (TN) or an FP and an abnormal data point
can be either a True Positive (TP) or an FN. Having ground truth information available,
even for misclassification of individual classifiers, meta-alerts would be generated with
high confidence referring to the meta-outlier score value, denoted as f̃ (GT)

i(meta). Since alerts are

only generated from TPs and FPs, f̃i(meta) can lead to falsely generated meta-alerts without
incorporating information on how many classifiers generated alerts. Thus, the meta-alert
outlier score can be penalized by some measure, e.g., utilizing majority voting or the ratio
of alerts generated to the number of classifiers. Taking advantage of the latter leads to a
penalized meta-alert outlier score, denoted as f̃ (penalized)

i(meta) . Setting a dedicated threshold for
meta-alert generation based on the penalized outlier scores, for instance, 0.3 in Table 1,
significantly reduces FPs and potentially alleviates the number of FNs that limit the alert
generation by obscuring the actual TPs.

It is noted that this measure only works for single system—multiple algorithms since
those algorithms definitely operate on the same input data and the total number of classi-
fiers processing the same event can be determined. In contrast, the number of classifiers
that operate distributively in the multiple systems—single algorithms case, processing the
same event, cannot be reliably determined.

Table 1. Exemplary meta-alert generation based on five online OD algorithms classifying five
data instances (3× normal, 2× abnormal) (yellow-colored background for alerts generated by each
classifier for True Positives (TP) and False Positives (FP); red-colored background for critical False
Negatives (FN); (GT) denotes if Ground Truth about the binary classification was available).

Classifier Normal Normal Abnormal Normal Abnormal
#1 TN (0.2) TN (0.3) TP (0.9) FP (0.6) FN (0.5)
#2 TN (0.1) FP (0.7) FN (0.5) TN (0.3) TP (0.9)
#3 FP (0.6) FP (0.6) TP (0.9) TN (0.3) FN (0.4)
#4 TN (0.1) TN (0.2) FN (0.5) TN (0.2) TP (1.0)
#5 TN (0.2) TN (0.2) TP (0.8) TN (0.1) FN (0.5)

g(GT)
i

0.20 0.20 0.20 0.20 0.20

f̃ (GT)
i(meta)

0.24 0.40 0.72 0.30 0.66

gi 1.00 0.50 0.33 1.00 0.50
f̃i(meta) 0.60 0.65 0.87 0.60 0.95
#alerts

#classi f iers 1/5 2/5 3/5 1/5 2/5

f̃ (penalized)
i(meta)

0.12 0.26 0.52 0.12 0.38

Meta-Alert 7 7 3 7 3

3.3. Streaming Alert Correlation and Clustering

The core component of SOAAPR in order to group incoming alerts into clusters,
potentially representing attack scenarios, is the Streaming Alert Correlation/Clustering com-
ponent. It is again noted that we are not yet interested in uncovering attack campaigns or
multi-stage attacks but attack scenarios or attack steps that are rooted in timely correlated
outliers. Although so-called Advanced Persistent Threats are characterized by intelligent
adversaries that might exploit the notion of time by stealthily prolonging their attack
campaign, we are focusing on the preliminary steps adversaries have to undertake that are
of a reasonable finite length of time. For multi-stage attack uncovering, we refer to other
work such as [38,54].
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Table 2 shows the 14 different attack scenarios of the CICIDS2017 datasets together
with their respective characteristics in terms of number of (anomalous) records associated
for each attack and their duration. Furthermore, the outlier percentage of each attack
within the dataset is given. Since OD is tailored for highly imbalanced data, it will not
work well for the DoS Hulk, Portscan and DDoS attack. However, especially for DoS-
like attacks, plenty of work exists for detection and prevention [55–57]. It can clearly be
seen from the table that, on average, if we exclude the DoS type, attacks are typically
not longer than 4 h. Furthermore, we assume that attacks are rooted in a reasonable
amount of outliers such that—if clustered—meaningful signatures of those potential attack
scenarios can be derived. The number of instances in Table 2 confirms this assumption
by showing the average amount of (anomalous) instances per attack scenario and attack
category (excluding the three above mentioned) is 2830 with a minimum of 11 for Heartbleed.
However, we want to note that each attack category has its unique characteristics in terms
of the average number of instances per attack scenario and their duration. Thus, it might
be reasonable to apply multiple instances of SOAAPR, each adjusted for a dedicated attack
category. This would also allow applying SOAAPR with other detection mechanisms,
except OD ones, which might also be tailored for DoS-like attacks.

Table 2. The 14 different attacks with respective characteristics of the CICIDS2017 datasets.

Dataset Attack Type # Instances Outliers (%) Duration (min)

Tuesday-WorkingHours SSH-Patator 5897 1.32 62
FTP-Patator 7938 1.78 73

Wednesday-WorkingHours

DoS Hulk 231,073 33.35 24
DoS GoldenEye 10,293 1.49 9
DoS Slowloris 5796 0.84 467
DoS Slowhttptest 5499 0.79 22
Heartbleed 11 0.002 20

Thursday-WorkingHours-Morning
Web Attack—Brute Force 1507 0.88 45
Web Attack—XSS 652 0.38 20
Web Attack—Sql Injection 21 0.01 2

Thursday-WorkingHours-Afternoon Infiltration * 36 0.01 86
Friday-WorkingHours-Morning Bot 1966 1.03 205
Friday-WorkingHours-Afternoon Portscan 158,930 55.48 138
Friday-WorkingHours-Afternoon (2) DDoS 128,027 56.71 20

* Although labeled as one attack scenario in the dataset, it actually consists of three short-term ones: Meta exploit Win Vista, Infiltration—
Cool disk—MAC and Infiltration—Dropbox download—Win Vista.

Furthermore, we deem it more reasonable that each incoming alert is only assigned to
one cluster. This stands in contrast to approaches, such as [40], whose community clustering
might assign alerts to several clusters under the assumption of dealing with uncertainty
in clustering, and, although clusters might contain alerts of unrelated attacks, they might
include all TP alerts. This assumption can be seen as critical since alerts of unrelated attack
scenarios, denoted in this work as “noisy”, might lead to blurred signatures, and similar
attack scenarios in the future may lead to completely different signatures without those
additional noisy alerts. SOAAPR operates on alerts with high confidentiality of TPs due to
the Alert Preparation mechanism.

The Buffer component serves as a FIFO (First In, First Out) data queue that helps
to cope with potential bursts of alert floods while relaxing the processing time of the
Streaming Alert Correlation/Clustering module. The streaming alert processing is performed
as provided with Algorithm 1 for each oldest (first) alert at in the Buffer. The timely order
of alerts is assumed and to be given by the Alert Preparation component. As of now, we limit
ourselves to five alert attributes for streaming clustering: IP-address (source, destination—
{ipsrc, ipdst}), port information (source, destination—{portsrc, portdst}) and the timestamp
indicating the time when the outlier was detected, denoted as ta. Moreover, one is able to
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weight alert attributes, for instance, to give less weight to the source IP-address or source
port as an adversary might spoof it during its attack scenario [48].

Algorithm 1: The Operation Principle of Streaming Alert Correlation / Clustering.
Input: Alert at composed of attributes {ipsrc, ipdst, portsrc, portdst, ta}, Minimum

Similarity min_sim, A cluster’s total time to live tttl

Output: Updated set C(t) of clusters each C(t)
i composed of an alert subset

A(t)
i ⊂ At, a create timestamp tc, a last alert added timestamp tlaa,

an alert counter cnt, an expiry date texpiry, an alert adding frequency
mean t_ f reqmean with its standard deviation t_ f reqstd, a flag state
indicating a cluster’s state "evolving", "saturated" or "discard"

.Initialization—add alert to new cluster
1 if C(t) == ∅ then
2 C(t)

0 ← at t(C0)
c ← ta t(C0)

laa ← ta t(C0)
expiry = t(C0)

c + tttl

3 cnt(C0) ← 1 state(C0) ← evolving

4 best_cluster ← 0
5 highest_sim← 0

.Iterate over all existing clusters
6 for i in C(t) do

.Clusters are regularly updated—check if cluster is still evolving
7 if state(Ci) == evolving then

.Compute the similarity of the new alert with the cluster
(Equations (2) and (3))

8 sim← similarity(C(t)
i , at)

9 if sim > highest_sim then
10 best_cluster ← i
11 highest_sim← sim

12 no_clusters← i
13 i← best_cluster

.Add alert to existing cluster or create new cluster
14 if highest_sim ≥ min_sim AND state(Ci) == evolving then

.Add alert to existing cluster

15 C(t)
i ← at cnt(Ci) ← cnt(Ci) + 1

16 t_ f req(Ci)
mean ← t_freq(Ci)

mean.moving_mean(ta − t(Ci)
laa )

17 t_ f req(Ci)
std ← t_freq(Ci)

std .moving_std(ta − t(Ci)
laa )

18 t(Ci)
laa ← ta

19 else
.Add alert to new cluster

20 i← no_clusters C(t)
i ← at t(Ci)

c ← ta t(Ci)
laa ← ta

21 t(Ci)
expiry = t(Ci)

c + tttl cnt(Ci) ← 1 state(Ci) ← evolving

22 return C(t)

In order to achieve streaming clustering for our purposes, we extend each cluster C(t)
i

with additional properties beyond the simple subset of alerts, which we deem mandatory to
answer the following fundamental questions: Firstly, when is a cluster saturated, i.e., when
is it ready for the process of signature generation? Secondly, when is a cluster with its
alerts considered outdated and should be discarded? To answer those two questions, we
refer to Table 2 and define two significant user-definable parameters: a maximum total
time to live for a cluster, denoted as tttl , and a minimum number of alerts that should



Electronics 2021, 10, 2160 17 of 42

be clustered in order to reasonably represent an attack scenario for signature derivation,
denoted as min_alerts. Based on those parameters, clusters are assigned the additional
information of its create timestamp tc, a last alert added timestamp tlaa, an alert counter
cnt, an expiry date texpiry, a flag state indicating a cluster’s state evolving, saturated or
discard and an alert adding frequency mean t_ f reqmean and its standard deviation t_ f reqstd.
The latter two characteristics are used to determine whether a cluster could be seen as
completed in a timely fashion without stressing the very latest expiry date. Thus, as long
as the minimum number of alerts per cluster is not reached, the time difference between
each alert is computed, and their moving mean and standard deviation are computed
by, e.g., the well-known Welford’s algorithm [58]. If the minimum number of alerts per
cluster is reached, alerts can still continuously be added to a correlated cluster as long as
this process happens frequently. However, if no more alerts have been added to a specific
cluster for some time, it is considered saturated and ready for signature generation. A trivial
but effective method is a one-dimensional (time) OD method based on the assumption that,
if a value is a certain number of standard deviations away from the mean, that data point is
identified as an outlier. The specified number of standard deviations is called the threshold
whose value is user-definable, denoted as the frequency exceeding threshold k.

With this set of information, we are able to answer the above questions. Therefore,
a cluster is considered saturated and ready to Trigger Signature Generation when it has reached
a minimum number of alerts and (from a time perspective) either the expiry date (texpiry =
tc + tttl) has been exceeded or, for a certain amount of time, no more alerts have been added
to it. Both time constraints are given by tnow > texpiry OR tnow > tlaa + t_ f reqmean + k ·
t_ f reqstd, in which tnow is the current time. Both options are mandatory since the expiry
date prevents, apart from the circumstance that falsely triggered alarms continuously keep
clusters alive, an adversary from unceasingly triggering alerts on purpose such that a
cluster is not considered saturated for the duration of the attack concealing its actual one.
The second part of the time constraint prevents an adversary from leveraging its attack
until the expiry date is met, allowing a maximum attack time period of tttl . SOAAPR is
also robust to attack scenarios that can be performed on sliding window-based approaches,
as discussed in [42], in which an attacker can prevent two attack steps from falling into one
window. In order to further lower the determinism for an attacker to not exploit either time
boundary, a certain amount of jitter might be introduced. Thus, similar to the mechanism
in [59], the attacker might not exactly guess both timing constraints.

Algorithm 2 is proposed to monitor the clusters in a regular time-triggered manner
(each time step ∆t) to check their conditions. This is necessary since, if no alert is streaming
in SOAAPR for a longer time span, clusters for the event-triggered case might already be
considered saturated or to be discarded.

For better comprehensibility, Figure 3 shows an exemplary scenario for two observa-
tion times (a) and (b) of (timely) evolving clusters in three dimensions—two hypothetical
alert attributes and the dimension of time. Although Ci+1 in (a) might have attribute
correlation with Ci, Ci is already considered saturated since the alert within Ci+1 is outdated
due to the frequency constraint. A third cluster Ci+2 is currently in the evolving state. Since
Ci was ready for signature generation and Ci+1 could not reach a minimum number of
alerts till the expiry date, which was assigned the state discard, both have been removed,
as shown in state (b). Cluster Ci+2 is assigned the state saturated in (b) since it reached
the minimum number of alerts, and no more alerts have been added for a certain amount
of time. A fourth cluster Ci+3 recently added two alerts and thus is in the evolving state.
Furthermore, a cluster with its corresponding set of alerts can be discarded by the Discard
Alerts and Clusters module when a signature of a cluster has been computed (assuming that
the above conditions are met) or if the minimum number of alerts per cluster could not be
reached before the cluster is considered to be expired.
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Algorithm 2: Monitoring of Trigger Signature Generation and Discard Alerts
and Clusters.

Input: Time step ∆t, Minimum number of alerts min_alerts, Frequency exceeding
threshold k, Set of clusters C(t)

Output: Set of clusters with state “saturated” C(t)
saturated and “discard” C(t)

discard
.Regularly update clusters

1 foreach ∆t do
2 tnow ← current_time()

.Iterate over all existing clusters
3 for i in C(t) do

.Check if cluster is “saturated” or needs to be “discarded”

4 if (tnow > t(Ci)
expiry) OR (tnow > t(Ci)

laa + t_ f req(Ci)
mean + k · t_ f req(Ci)

std ) then
5 if cnt(Ci) ≥ min_alerts then
6 state(Ci) ← saturated
7 else
8 state(Ci) ← discard

9 if state(Ci) == saturated then
10 C(t)

saturated ← C(t)
i

11 if state(Ci) == discard then
12 C(t)

discard ← C(t)
i

13 return C(t)
saturated, C(t)

discard

t

Ci
Ci+1 Ci+2

(a)
t

Ci+2

(b)

Ci+3

Figure 3. An exemplary scenario of evolving alert clusters for two different observation times
(a,b)—indicated by the frames with gray background—with two hypothetical alert attributes and the
timestamp attribute.

Many algorithms for data stream clustering exist that operate on some similarity
measure such as the partition-based approaches incremental k-means, HPStream or CluS-
tream, which has already been used for alert correlation in [6], or DenStream, I-DBSCAN or
LDBSCAN as density-based cluster methods [60]. For instance, established clusters feature
a cluster centroid each in l dimensions, and a new alert, characterized as a l-dimensional
data point, could be added to the cluster whose distance to the data point is the lowest.
Adding the time t as an additional dimension, one could obtain moving (evolving) clusters
in t, which gets completed as time passes, as illustrated in Figure 3. When a new alert is
very far away in time from the ones within the cluster, even if the other alert attributes are
highly similar, it might not be added to it if the time dimension’s weight lets the similarity
fall below the minimum similarity. However, we have deliberately decided against this
approach for two reasons. Firstly, alert attributes are coordinates in the l-dimensional space,
and similarity is only a measure for each coordinate. If one is additionally interested in
the similarity between two different coordinates, such as the similarity of the source IP
from one alert with the destination IP of another alert, this procedure cannot be utilized.
Secondly, the setting of a minimum similarity value min_sim as a criterion, whether to
add an alert to an existing cluster or not, depends on t which significantly decreases its
interpretability. The graph-based approach in GAC allows arbitrary similarity functions,
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although the authors limited the attributes to only compare {ipsrc, ipdst, portsrc, portdst}
between any two alerts. It is not able to incorporate timing information, and an edge in the
graph between two nodes (alerts) is only added if a minimum similarity value is reached.
This fine-granular setting significantly influences the resulting alert similarity graph and
the final alert clusters obtained from it. Thus, we have chosen a more general approach by
adding an alert to a cluster in a streaming fashion by measuring the similarity of a new
alert at with the whole i-th cluster Ci = {aj|j ∈ Z, 1 ≤ j ≤ |Ci|} by utilizing Equation (2),
where Ci[j] is the j-th alert aj of Ci. The notion of time is, contrary to [40], included by the
time constraints of the expiry date and frequency transgression while not blurring min_sim
in a timely manner.

sim(at, Ci) =
∑
|Ci |
j=1 alert_sim(at, Ci[j])

|Ci|
∈ [0, 1] (2)

The similarity in between the new alert at and the j-th alert aj of Ci can be computed

by Equation (3), utilizing attribute-specific comparison functions, denoted as fk(a(x)
t , a(y)

j ),

which might be individually weighted by wk (typically ∑K
k=1 wk = 1) for a total amount of

K comparison functions and x, y not necessarily the same attributes of at and aj.

alert_sim(at, aj) =
∑K

k=1 wk · fk(a(x)
t , a(y)

j )

∑K
k=1 wk

∈ [0, 1] (3)

For network-related alerts, the attributes {ipsrc, ipdst, portsrc, portdst} are the most
important and common ones [40]. However, contrary to GAC with fk ∈ {0, 1}, whether
the compared attributes are unequal (0) or equal (1), and x == y for each k, we utilize
comparison functions shown in Table 3. In addition, with regard to x 6= y, we check
whether the source IP-address of the new alarm compares to the destination IP-address
of an existing alert, which might be an indicator that a host was already compromised,
taking into account that the victim communicates with the attacker. The same applies for
the identity check of the source port of at with the destination port of aj.

Table 3. The proposed comparison functions fk to compute the similarity between alert at and aj,
utilizing the alert attributes {ipsrc, ipdst, portsrc, portdst}.

fk Computation

f1 ∈ {0, 1} ip(at)
src

?
= ip

(aj)
src

f2 ∈ {0, 1} ip(at)
dst

?
= ip

(aj)
dst

f3 ∈ {0, 1} ip(at)
src

?
= ip

(aj)
dst

f4 ∈ {0, 1} port(at)
dst

?
= port

(aj)
dst

f5 ∈ {0, 1} port(at)
src

?
= port

(aj)
src

f6 ∈ {0, 1} port(at)
src

?
= port

(aj)
dst

For iterating over all existing clusters of the current set C(t) with each new alert at and
calculating the similarity of it with the subset of alerts in each C(t)

i , one might assume high
complexity in terms of time and space. However, the number of comparison functions K is
fixed, and the number of clusters in the current set |C(t)| can be seen as fixed as well since
it only fluctuates when new clusters occur, but expired or saturated clusters disappear over
time. Thus, with respect to streaming alerts at, the Streaming Alert Correlation/Clustering
module has only linear time and space complexity since only the number of alerts in
an existing cluster can increase until it is expired, which demands space and time by
computing the overall similarity of the new alert with all alerts of each existing cluster.
As already mentioned, an attacker might take advantage of producing as many “decoy”
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alerts as possible to keep alive and fill a cluster until texpiry is satisfied to stress out the
time and space complexity. However, the attacker might only be able to trigger a limited
amount of decoy alerts since the alerts are generated by the online OD algorithms, and
too many “outliers” would represent a concept drift in Xt. Thus, malicious data might
be seen as normal after a certain amount of time, and no more alerts that stress SOAAPR
are generated. SOAAPR achieves a decent tradeoff between a “real-time” detection by
ideally analyzing each individual alert generated by online OD in order to immediately
react to an attack (which is impossible in real-world scenarios by the massive amount of
streaming alerts afflicted with FP and FN) and a “near real-time” detection with a certain
delay by the clustering process to obtain a decent amount and human-manageable set of
alerts representing potential attack scenarios.

3.4. Signature Generation and Sharing

Inspired by the idea in [9] to derive privacy-preserving signatures and fingerprint-like
characteristics of novel attack patterns by only utilizing the alert information commonly
available with IP and port information, we extend it in SOAAPR. Clusters containing a huge
number of alerts representing an attack scenario can be significantly reduced to a fixed-sized
characteristic by transforming the communication relation of hosts that were involved
in an attack into a directed graph-based structure to derive so-called motif signatures
initially proposed in [41]. This enables a more fine-grained characterization of attacks
compared to other work discussed in Section 2.5, such as [40], only differing between
four types of communication patterns. However, with the ever-increasing complexity of
novel attacks, we deem that (i) not only the communication relation is a mandatory attack
characteristic but also (ii) the data’s attributes or features of the data Xt, which are mainly
responsible for shaping an attack and, thus, causing outliers, as well as (iii) the temporal
pattern between the alerts. Considering these three metrics for fingerprinting clusters by
deriving three signatures denoted as sigcom (i), sigattr (ii) and sigtemp (iii), we can achieve
a more comprehensive and even more fine-grained characterization and comparison of
attack scenarios while still satisfying the privacy-preservation benefit.

We see ourselves encouraged in our assumption of introducing the additional sig-
nature sigattr since certain types of attacks and their affected outliers are predominantly
caused by the same features. As could be shown in [61], some features have been more
significant over multiple attack scenarios, e.g., B.Packet Len Std, Flow Duration or Flow IAT
Std, and certain types of attacks are more reflected by dedicated features referring to Table 3
in [61]. For instance, Subflow Fwd Bytes and Total Length Fwd Package are most influential
for Infiltration and Bot attack types, or the Bwd Packet Length Std is a typical feature whose
outlierness indicates DoS-like attacks [61,62].

Likewise, our assumption proposing that sigtemp is strengthened by the statement
in [48] that a series of intrusion actions performed by an attacker is more concentrated
in the temporal domain than random FPs. As similarly stated in [48], sigtemp will likely
not characterize a real attack with precision since an attacker might try to manipulate
the timing of its attack steps forging the time interval between triggered alerts, or sigtemp
might be blurred by FP alerts. It is nevertheless a reasonable approach for capturing the
temporal behavior of attacks. In particular, it is easier for an attacker to manipulate the
timing of a multi-stage attack than for a single step (focus of SOAAPR) since some tools,
e.g., Metasploit, are often used, whose execution, resulting in potential alerts, might not be
tampered in a timely way.

Although each signature might not fully characterize an attack on its own, such as
sigcom proposed in [9], the combination of the signature triplet, potentially weighted as
well, better allows characterizing attacks and finding novel patterns that somehow share
similarities with other signatures. Thus, deviations of one of the signatures from similar
attack scenarios can be better compensated by the others. It must be noted that meaningful
signatures can be derived when a cluster contains all relevant instances of an attack, ideally
free from FPs and FNs, which is an especially ambitious intention of utilizing OD. Having



Electronics 2021, 10, 2160 21 of 42

the knowledge about the communication relation of hosts, whose features are the most
important for a certain attack scenario and the timing behavior of a potential attack scenario,
significantly provides a more intuitive root cause analysis process for a human expert than
analyzing correlated alerts on its own.

3.4.1. Generation and Comparison of sigcom

Since it is described in detail in [9], we only provide the most important steps
to perform signature generation for sigcom and comparison but strongly recommend
the original work. In order to derive sigcom, we take advantage of the alert attributes
{ipsrc, ipdst, portsrc, portdst} representing the communication structure of two hosts commu-
nicating over a port (ipsrc : portsrc → ipdst : portdst). Those attributes are contained in each
alert aj of the i-th cluster Ci, as shown in Figure 4. To transform all alerts into a network
graph Gcom(Ci), nodes of the graph either represent hosts via the IP-address {ipsrc, ipdst}
or ports that are bound to the respective IP-address {ipsrc : portsrc, ipdst : portdst}. The
edges of the graph are reflected by information on who attacked whom: {(ipsrc, ipsrc :
portsrc), (ipsrc : portsrc, ipdst : portdst), (ipdst, ipdst : portdst)}.

Ci

aj = {ipsrc, ipdst, portsrc, portdst, ...}

IP port port IP

port

port

Gcom(Ci)

sigcom(Ci)
transform

calculate
compare

Figure 4. The generation and comparison process of the signature sigcom with respect to [9].

With this intuitive communication direction, a directed graph structure is obtained.
In order to calculate the signature, all sub-graphs G∗com ⊆ Gcom are enumerated, which are
assigned to motif patterns mi. The accumulated number of occurrences of every mi will
yield an absolute signature MA. Since MA depends on the graph size, a comparison can
be achieved by utilizing the so-called Z-Score [41]. Briefly summarized, a random graph
structure with the same size and the same number of edges as Gcom is derived and utilized
to generate a “relative” signature denoted as MZ, which represents sigcom(Ci) with respect
to Figure 4. In order to compare two such signatures, MZ

1 and MZ
2 , they are interpreted as

two vectors of a fixed length in a multi-dimensional space. The similarity between MZ
1 and

MZ
2 , independent of their length, can then be derived by calculating the angle φ between

the two vectors, as shown in Equation (4), in which < ~MZ
1 , ~MZ

2 > is the inner product and
|| ~MZ

1/2||2 the Euclidean norms.

sim(MZ
1 , MZ

2 ) =
cos−1(φ)

π
; cos(φ) =

< ~MZ
1 , ~MZ

2 >

|| ~MZ
1 ||2 · || ~MZ

2 ||2
(4)

3.4.2. Generation and Comparison of sigattr

Considering that for different attack scenarios, certain features are more distinctive,
we take advantage of a different approach than the graph-based one for sigcom in order
to calculate and compare signatures sigattr. In general, we transform feature importance
information into a histogram Hattr(Ci) describing sigattr that characterizes the potential
attack scenario clustered in Ci.

In the example in Figure 5, each alert aj of the cluster Ci provides the feature im-
portance score values for the top-γ-features of the set F consisting of d features (score
values of other features are set to zero) and the corresponding penalized meta-alert outlier
score f̃ (penalized)

j(meta) . Each feature fi of F represents a histogram bin (bucket), and the count

(frequency) of this bin is computed by adding up each score per feature s(i)f weighted
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with the outlier score provided by each alert in the cluster. In the example, this leads
to b(i)sum = ∑j s(j)

fi
f̃ (penalized)
j(meta) . Finally, we compute the relative frequency h of each bin by

h( fi) = b
( fi)
sum

∑d
i b

( fi)
sum

.
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aj 

aj+1 
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...
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bsum 1.44 0.57 0.21 2.14 1.16 0

h 0.26 0.10 0.04 0.39 0.21 0

calculate

...

Figure 5. The generation and comparison process of the signature sigattr.

In order to compare two signatures, one can take advantage of methods computing
the similarity between two statistical distributions, which are represented by any two
histograms Hattr(Ci) and Hattr(Cj) obtained from clusters Ci and Cj. Although the two-
sampled Kolmogorov–Smirnov test can be modified to function on discrete data, as it
applies for binned values in the histogram, it is normally used for continuous data [63].
Two of the standard choices in the discrete case are the well-known chi-squared test and
the Bhattacharyya distance measure [64]. Here, we apply the Bhattacharyya distance
DB(Hi, Hj) between the histograms Hi = {h

(b)
i }b=1,...,B and Hj = {h

(b)
j }b=1,...,B for B equi-

width bins b with the (relative) frequency h, which is defined as given in Equation (5).
It takes values in the range of (0 ≤ DB ≤ ∞). BC is the Bhattacharyya Coefficient
(Equation (5)) for which 0 ≤ BC ≤ 1 applies. We obtain identical histograms and thus
identical signatures sigattr between two attack scenarios if DB == 0 applies. The higher
the DB, the more different the signatures are.

DB(Hi, Hj) = −ln(BC(Hi, Hj)); BC(Hi, Hj) =
B

∑
b=1

√
h(b)i h(b)j (5)

It is noted that the applied OD algorithms must be capable of providing the top-γ-
features. Although only a limited amount of work is able to satisfy this requirement, it is
an important functionality for the design of future anomaly-based IDS [13]. The higher
the value for γ, the more information must be transmitted with each alert increasing the
communication overhead. Therefore, a decent value for γ could provide a tradeoff between
a meaningful signature and a reasonable communication overhead not stressing resources.
Furthermore, in order to be able to accumulate a knowledge base of signatures sigattr, they
all must have been created by the same feature set F , such that each feature within F
represents the exact same bin in sigattr. However, in many applications, OD algorithms are
utilized on the same pre-processed data by systems such as Argus or Bro-IDS, as utilized
in [53], or CICFlowMeter-V3, as used in [61]. Nevertheless, a knowledge base should be
built up providing signatures for a multitude of commonly applied feature sets such that
the user can choose the set, which suits the application best. To what extent signatures
obtained from a different amount of γ features but from the same feature set F can be
compared must be evaluated in future work.
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3.4.3. Generation and Comparison of sigtemp

For generating a signature that represents the temporal (timing) characteristic of an
attack, called sigtemp, we take advantage of the same procedure as for sigattr. The two
metrics, the duration of an attack and its number of respective alerts (with respect to
Table 2), extracted from a saturated cluster could be utilized to compare a potential novel
attack with a knowledge base consisting of signatures for different attack scenarios with
an averaged duration per attack and number of events. However, averaged values do not
ideally represent the ground truth. Therefore, a more fine-grained way is to characterize
an attack by computing the difference in time, ∆t, in between the temporally ordered
alerts (events).

With respect to Figure 6, we transform the ∆t information of alerts from cluster Ci into
a histogram with a fixed amount n_bins of equal-width bins b, denoted as Htemp(Ci), which
describes the signature sigtemp(Ci). The histogram ranges from 0 to a subtle maximum
value, mostly representing the attack scenarios’ best, and the bin-width can be computed
dividing the maximum value by the number of bins. If some outlying ∆ts occur, they are
added to the last bin. In order to preserve information about the number of instances,
a frequency histogram is proposed; otherwise, one might calculate a relative frequency
histogram. One might further differentiate between histogram types, such as short, mid or
long, to adjust the number and width of the bins, depending on the order of magnitude
of ∆ts. To compare two signatures (histograms) of the same type, we again leverage the
Bhattacharyya distance measure, as discussed with sigattr.

Ci sigtemp(Ci)

transform & calculate

compare

t

Δti Δti+1 Δti+2 ... 

Htemp(Ci)

Figure 6. The generation and comparison process of the signature sigtemp.

It is noted that the correctness of sigtemp critically depends on the correct order of
alerts and assumes no strong variation in delays of alerts or a high number of FPs or FNs.
However, if the notion of time of IDS sensors is not correctly loosely synchronized or an
adversary may tamper with the time, imprecise temporal characteristics of alerts may cause
incorrect or confusing results for sigtemp. We leave the discussion of this phenomenon for
future work.

3.4.4. Handling of the Signatures

Having a certain set of reference scenarios, denoted in this work as the Knowledge Base,
one can identify novel attack scenarios in the Runtime phase by comparing the obtained
signatures, sigcom, sigattr and sigtemp, with existing ones utilizing the Scenario Comparison
module. Signatures known from misuse-based IDS, anti-virus software or anti-malware
systems are either one- or two-dimensional, as Blacklists or Whitelists are examples of
the former and regular-expression functions is an example for the latter. A more re-
cent method where multi-dimensional signatures can be seen as ML models that create
a multi-dimensional model of input data applying mathematical techniques and score
or classify observations. However, formats such as STIX are not compatible with those
technologies as each class of threat classification may be founded on completely different
trained models [65]. Thus, similar to the idea of conventional signatures, we transfer
the idea of having such one-dimensional characteristics to anomaly-based ML systems.
What is more, the signatures proposed, sigcom, sigattr and sigtemp, must not necessarily
match the exact signatures from the reference scenarios since the comparison measures
can help to identify the similarity of novel patterns to existing ones from the Knowledge
Base. Over time, the set of reference scenarios might grow very strongly. Thus, it might be
time consuming to compare a novel attack pattern composed of the three signatures with
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each one in the Knowledge Base. Thus, the Unsupervised Mining module makes it possible
to apply hierarchical clustering in the Learning phase, which clusters similar unknown
attack pattern before presenting them to the Human Analyst. Hierarchical clustering was
also proposed by [9] but only for similar sigcom. Having a tree-like structure within the
Knowledge Base, attack scenarios characterized by the three-tuple of signatures can be struc-
tured into clusters according to their similarities. For each of the hierarchical clusters,
the signatures that represent the most of each sub-cluster can be determined to compare
the novel attack pattern much faster by only comparing it with the representing signa-
tures sig(Re f )

com , sig(Re f )
attr and sig(Re f )

temp . The overall best signature match can be obtained by

max(sigcom, sig(Re f )
com ) ∧min(sigattr, sig(Re f )

attr ) ∧min(sigtemp, sig(Re f )
temp ). Since none of the sig-

natures contain privacy-relevant information, they can be enriched with additional attack
information and, e.g., shared among companies using STIX in an automated manner [66].

4. Experimental Evaluation
4.1. Methodology and Settings

With respect to Figure 1, we split our evaluation of SOAAPR into two parts. Firstly (i),
the Streaming Alert Correlation/Clustering module along with Trigger Signature Generation and
Discard Alerts and Clusters is evaluated. Secondly (ii), the Signature Generation as well as the
Scenario Comparison capability of SOAAPR are evaluated. For (i), only the traffic labeled CSV
files of CICIDS2017 are parsed to derive the ideal number of instances per attack scenario
serving as the ground truth clusters. Then, we iterate over the datasets and simulate an
anomaly-based IDS by generating alerts that are fed into SOAAPR. Our proposed Streaming
Alert Correlation/Clustering is used beside the competitor GAC to evaluate and compare
their clustering capability. Since GAC does not rely on any intrusion type attribute for
clustering, it could be leveraged for anomaly-based IDS, and its outcome can be used to
generate motif-signatures sigcom by design. Furthermore, its chunk processing could be
regarded as a trivial form of online processing. For those reasons, we see a comparison
between SOAAPR with GAC as reasonable.

For (ii), we generate signatures sigcom as part of the Signature Generation module,
leveraging ideally clustered attack scenarios from CICIDS2017 and comparing them (Sce-
nario Comparison module) in order to show their applicability for attack characterization
based on OD. In order to derive signatures sigattr, the supervised RF algorithm is used
on a selection of attack scenarios from CICIDS2017 and CSE-CIC-IDS2018, each extracted
into a separate CSV file. The reason for choosing the supervised RF algorithm instead
of an online unsupervised OD variant is the more reliable feature importance scoring
functionality providing better interpretability for sigattr evaluation, which can be obtained
by the SHAP method. Another benefit of the supervised approach is that the outlier per-
centages do not influence the feature importance scoring functionality. Therefore, we could
extract arbitrary attack scenarios, even those that are not characterized with a low anomaly
percentage. Thus, evaluations of unsupervised online OD methods along with the Alert
Preparation module are part of future work. We then produce clusters from alerts utilizing
the top-γ-features and the outlier scores per instance obtained by multiple RF-instances
(single system—multiple algorithms) in order to generate and compare signatures sigattr.
For the third signature sigtemp, we compute the ∆ts from each ideal attack cluster within
CICIDS2017 and CSE-CIC-IDS2018 to generate and compare signatures.

Experiments were conducted on a virtualized Ubuntu 20.04.1 LTS equipped with
12 Intel(R) Xeon(R) CPU E5-2430 at 2.20 GHz and 32 GB memory running on a Proxmox
server environment. Programs are coded in Python 3.9 using the latest PyCharm 2021.1.3
environment. GAC for graph representation and clustering as well as sigcom for graph repre-
sentation and motif comparison utilizes the igraph (https://igraph.org/python/ (accessed
on 25 June 2021) and networkx (https://github.com/networkx (accessed on 25 June 2021)
libraries. RF is taken from sklearn (https://scikit-learn.org (accessed on 25 June 2021), SHAP
from its respective library (https://pypi.org/project/shap/ (accessed on 25 June 2021) and
SOAAPR’s sigattr as well as sigtemp generation rely on histograms generated with the pop-

https://igraph.org/python/
https://github.com/networkx
https://scikit-learn.org
https://pypi.org/project/shap/
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ular numpy (https://numpy.org/(accessed on 25 June 2021) library. Across all clustering
evaluations, GAC is configured with the default hyperparameters proposed by [40] with a
clique size of 15, a similarity threshold between alerts of 0.25 and a chunk size of 5000 sub-
sequent alerts since higher numbers of alerts increase the graph size and its computational
complexity heavily. For an equal comparison with SOAAPR, we did not take advantage
of parallel processing. SOAAPR’s hyperparameters are min_sim, tttl , min_alerts and the
frequency exceeding threshold k. Although SOAAPR allows six comparison functions with
respect to Table 3, to ensure equal conditions in comparing with GAC, only f1, f2, f4 and
f5 have been used. Unless otherwise stated, SOAAPR’s streaming clustering parameters
are set to min_sim = 0.25, tttl = 1day, min_alerts = 8 and k = 50. The hyperparameters
provided decent results across all datasets and attack scenarios. The minimum similarity
min_sim is set equally to GAC, and the total time to live tttl is set to one day since none of
the attack scenarios present in CICIDS2017 and CSE-CIC-IDS2018 exceeds this boundary,
and we are able to capture all alerts. The minimum number of alerts is set to 8 to capture at-
tack scenarios with even a low number of associated alerts, e.g., Heartbleed in CICIDS2017.
The frequency exceeding threshold is set very high in order to capture any fluctuations
of ∆ts throughout all attack scenarios, which is also amplified by the poor time stamping
quality present in CICIDS2017 and CSE-CIC-IDS2018.

4.2. Data Source

For the evaluation of the alert correlation, much of the work—even recent works [38,67,68]—
applies the outdated DARPA 2000, having two scenarios LLDOS 1.0 and LLDOS 2.0.2 based
on the output of the (misuse-based) ISS RealSecure IDS due to the lack of labeled alert data
or attack data that can be used for the purpose of attack detection. Haas et al. use, apart
from their synthetically generated alert data set, a real-world dataset from the Internet
Storm Center (SANS Technology Institute, Internet Storm Center, https://isc.sans.edu/
(accessed on 25 June 2021) operating a platform called DShield for sharing data from
security devices to evaluate their GAC clustering approach. However, this data source
lacks ground truth information such that generated clusters by GAC or our SOAAPR
approach cannot be evaluated for their accuracy. Since we are interested in the complete
processing pipeline starting from the detection of outliers in Xt by the online OD algorithms,
we set our focus on recent IDS datasets such as CICIDS2017 [61] and CSE-CIC-IDS2018
(License: https://registry.opendata.aws/cse-cic-ids2018/ (accessed on 25 June 2021) [61]
provided by the University of New Brunswick on AWS or UNSW-NB15 since long-serving
and still widely used datasets, such as KDD Cup 99 (http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html (accessed on 25 June 2021) or NSL-KDD (https://www.unb.ca/
cic/datasets/nsl.html (accessed on 25 June 2021), have been criticized by many researchers
over the past couple of years [61,69]. Especially for the evaluation of anomaly-based IDS
methods, the latest updated datasets, such as CSE-CIC-IDS2018, should be utilized [70].

Although CSE-CIC-IDS2018 is tailored for the evaluation of anomaly detection and
consists of seven attack categories with a total of 14 different types of intrusions, e.g., SSH-
BruteForce or DDoS-LOIC-UDP, it only provides statistical traffic features obtained by
CICFlowMeter-V3 and saved as a CSV file. However, in order to generate meaningful alerts
for SOAAPR, the typical TCP/IP level network traffic header features, IP-address and port
number are mandatory. Furthermore, in some cases, timestamps from data record n + 1 is
older than the timestamp from the data record n. Therefore, sorting the dataset according
to its timestamp feature is necessary in order to preserve the chronological sequence of
events. UNSW-NB15 provides IP and port feature information and has a huge variety of
attacks and subtypes of attacks, but the corresponding ground truth CSV file cannot be
properly used to map attack scenarios to each anomalous instance due to the unclear start
and ending timestamps of events rather than assigning clear temporal-ordered timestamps
to the dataset records. Although the ML CSV files from CICIDS2017 do not feature IP and
port information, the additional available labeled traffic CSV files do, and these can be
used to gather the mandatory information since both CSV files have the same timestamps

https://numpy.org/
https://isc.sans.edu/
https://registry.opendata.aws/cse-cic-ids2018/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
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and number of records. However, there are two drawbacks with CICIDS2017. Firstly, each
of the 14 attack scenarios, with respect to Table 2, only occur once, which hampers the
signature comparison of similar attack scenarios. Secondly, the units of the timestamp
are only provided in minutes. Since CSE-CIC-IDS2018 provides similar attack scenarios,
e.g., two Brute Force - Web attacks, and timestamps are provided in a more fine-granular
fashion, it is at least utilized for measurements where no IP and port information is required,
such as for the sigattr and sigtemp evaluation. Thus, although no accurate timestamping
is provided, we ambitiously tried to compare attack scenarios using different datasets
of CICIDS2017 and CSE-CIC-IDS2018. In order to encounter the timestamp problem in
CICIDS2017, synthetic timestamps are inserted for data instances from an attack scenario
assigned the same timestamp in minutes. However, in a real-world scenario, we might be
able to assign more fine-grained units, such as milliseconds. In order to be able to generate
meaningful temporal signatures, we introduce smaller units by assuming an equal ∆t of
alerts have timestamps from the same minute. We take into account blurred signatures for
sigtemp on CICIDS2017 but see the potential of this fingerprinting using the more accurate
results of CSE-CIC-IDS2018. Since our aim is to mine information from the outcome of OD
algorithms, for the evaluation of SOAAPR’s and GAC’s clustering, we excluded the DoS
Hulk attack scenario in the CICIDS2017 Wednesday-WorkingHours dataset and completely
neglected the Friday-WorkingHours-Afternoon datasets due to the high percentage of outliers
with respect to Table 2. The streaming clustering of SOAAPR depends on timely sorted
alerts, which is why all alerts in CICIDS2017 have been sorted.

4.3. Evaluation Criteria

In terms of evaluation metrics for alert correlation, we rely on four different metrics.
Two have been proposed by Ning et al. [71] called completeness and soundness. The former,
also known as the true detection rate, is denoted as COMP and calculated by the ratio of
the number of correctly correlated alerts (CCA) divided by the number of related alerts RA,
i.e., the real attack-scenario-related number of instances, which states the ground truth of
each attack scenario (Equation (6)). The latter, denoted as SOUND, is the ratio of CCA and
correlated alerts (CA), i.e., all the clustered alerts in Ci (Equation (7)). A further metric—the
Jaccard index—will provide the similarity of the ideal cluster (ideal attack scenario) and Ci
obtained by the alert correlation system. It compares two sets of elements, which, in this
case, are the ideal cluster and the obtained cluster, and provides information about which
alerts are shared between the two sets and which are distinct. It is denoted as JAC and
computed by Equation (8). It takes values in the range of [0, 1] and yields a higher value
the more similar two sets are. Further metrics, including the compression rate, that might
be interesting for systems afflicted with a high number of FP are available in [8].

COMP =
#CCA
#RA

(6)

SOUND =
#CCA
#CA

(7)

JAC =
|RA ∩ CA|
|RA ∪ CA| (8)

Furthermore, we measure the average runtime for GAC and SOAAPR’s streaming
clustering as a representative metric for computational performance. Thus, we accumulated
the elapsed time for processing each dataset until the final clusters are obtained.

In terms of attack characterization, for each signature sigcom, sigattr and sigtemp per
attack scenario, we compute the similarity values in between each attack scenario with
respect to the formulas given in Section 3.4. Furthermore, we measure the average runtime
to generate each signature in order to compare the computational performance of sigcom,
sigattr and sigtemp of varying cluster sizes.
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5. Discussion of Results
5.1. SOAAPR Clustering

Table 4 summarizes the clustering results of SOAAPR and GAC for the 11 selected
attack scenarios of the CICIDS2017 datasets. It shows how many clusters were generated by
each algorithm and how many clusters are assigned to each attack scenario. Furthermore,
the number of associated alerts contained in the assigned clusters is provided together
with the total number of ideal alerts that represents each attack scenario. With respect to
Equations (6)–(8), the metrics are provided for the clustering performance and the overall
elapsed time to cluster the attack scenarios for each dataset.

Table 4. Clustering performance results of SOAAPR and GAC on 11 attack scenarios of the CICIDS2017 datasets (No.
Clusters—assigned cluster(s)/generated cluster(s); No. Alerts—assigned alerts/actual number of alerts per attack sce-
nario; Metrics—COMP/SOUND/JAC; Time denotes the total amount of processing time for each dataset containing the
respective attack scenarios).

Attack Scenario
SOAAPR GAC

No. Clusters No. Alerts Metrics Time (s) No. Clusters No. Alerts Metrics Time (s)

FTP-Patator 1/2 7938/7938 1.0/1.0/1.0 105.11 2/3 1 10,000/7938 1.0/1.0/0.92 1424.17
SSH-Patator 1/2 5897/5897 1.0/1.0/1.0 2/3 1 8835/5897 1.0/1.0/0.88

WA—Brute Force 1/24 1507/1507 1.0/1.0/1.0
2.32

1/1 2180/2180 1.0/0.69/0.69
266.56WA—XSS 21/24 652/652 1.0/1.0/1.0 1/1 2180/2180 1.0/0.30/0.30

WA—Sql Injection 2/24 16/21 0.76/1.0/0.76 1/1 2180/2180 1.0/0.01/0.01
DoS GoldenEye 2/4 2 4065/10,293 0.39/1.0/0.39

63.62

3/5 1 11,588/10,293 1.0/1.0/0.96

12,107.17DoS Slowloris 1/4 2 3588/5796 0.62/1.0/0.62 2/5 1 10,000/5796 1.0/1.0/0.94
DoS Slowhttptest 1/4 2 5501/5499 1.0/1.0/1.0 3 2/5 1 10,000/5499 1.0/1.0/0.81

Heartbleed 0/4 2 0/11 0.0/0.0/0.0 0/5 1 0/11 0.0/0.0/0.0
Infiltration 1/1 36/36 1.0/1.0/1.0 ∼0.0 1/1 36/36 1.0/1.0/1.0 ∼0.0

Bot 2/2 1926/1966 0.98/1.0/0.98 2.51 2/2 1962/1966 1.0/1.0/1.0 3 75.09

1 Due to the “out of memory” error using 32 GB RAM, the alerts had to be processed in chunks of 5000, as proposed in [40]; 2 Changed
hyperparameter set; 3 rounded values.

SOAAPR perfectly clusters both brute force scenarios, FTP-Patator and SSH-Patator,
each in a separate cluster while only needing approximately 105 s. For GAC’s graph-based
clustering, in contrast, a high amount of alerts needed to be processed in chunks since
32 GB RAM on the evaluation machine were not enough. Nevertheless, the processing
time was significantly higher by a factor of approximately 13. Three clusters have been
generated by GAC, which split each attack scenario into two halves. Thus, both attacks
have been assigned to two clusters each. Due to the process of splitting, GAC even misses
some alerts for both scenarios, which yielded a JAC value lower than 1. For the sake of
visualization, the sunburst diagram in Figure 7a is given showing GAC’s clustering results.

GAC clustered the three web attack scenarios into one cluster completely since the alert
attributes are highly similar and it cannot differentiate them in a timely way. In contrast,
SOAAPR did generate 24 clusters and captured the Brute Force scenario into one cluster
completely while splitting the Sql Injection into two clusters and XSS into 21, as depicted
in the sunburst diagram of Figure 7b. The splitting of XSS is due to the fact that the first
min_alerts of the attack scenario are timestamped in the same minute; thus, a meaningful
frequency exceeding factor k cannot be built. Furthermore, all attack scenarios have similar
alert attributes such that decreasing tttl would split the scenarios in a better manner. Setting
tttl = 45 min (duration of Brute Force attack scenario) and increasing min_alerts = 500
resulted in two clusters while capturing the Brute Force in one cluster with COMP =
SOUND = JAC = 1.0 and XSS into the other with COMP = 1.0, SOUND = 0.97 and
JAC = 0.97.

With the default hyperparameter setting, SOAAPR generates only one cluster for the
DoS-like attacks and Heartbleed scenario. This is due to the fact that all of those attack
scenarios have similar alert attributes. Slightly increasing the min_sim parameter to 0.5
instead of 0.25 generates three clusters in which all DoS-attacks are grouped together in one
cluster, and the Heartbleed attack is perfectly assigned into another cluster with COMP =
SOUND = JAC = 1.0. Both hyperparameter settings result in an approximate processing
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time of 500 s. However, Table 4 shows the results of a hyperparameter set adapted to
capture each DoS-attack. It was already mentioned that in real-world applications, it might
be feasible to apply different GAC instances, each parameterized for mining a dedicated
attack scenario. Thus, we decreased tttl to one hour and set the min_alerts to 2000 (DoS-
attacks are typically characterized by a high number of events) and the frequency exceeding
factor k to 300 since the ∆ts are typically quite low for DoS-attacks in order to be sure that
each attack scenario is completed in a timely manner. Since tttl was decreased, SOAAPR’s
processing time was significantly reduced to approximately 60 s because it can discard
clusters after tttl was exceeded, which is in contrast to GAC, with over a 3-hour processing
time, an impressive speed-up. GAC again needed to process the attack scenarios in chunks,
which resulted in five total clusters. For better illustration, the clustering results of the
DoS-attacks and Heartbleed utilizing GAC (c) and SOAAPR (b) is depicted as sunburst
diagrams in Figure 7.

In terms of the Infiltration and Bot attack scenario, both algorithms performed almost
similarly. Especially with the low amount of alerts for Infiltration, GAC could compete with
our approach. However, with the 1966 alerts of the Bot attack, GAC’s processing time is
a factor of 30 higher. Just decreasing the frequency exceeding factor k for the Infiltration
dataset, SOAAPR generates two or three clusters instead of one, which better represents
the ground truth of three individual infiltration attacks instead of the labeled single one
referring to the footnote in Table 2.
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Figure 7. Sunburst diagrams for the clustering performance of (a) GAC on FTP and SSH Brute Force,
(b) SOAAPR on the web attacks Brute Force (1 cluster), XSS (21 clusters) and Sql Injection (2 clusters),
(c) GAC and (d) SOAAPR on the DoS-attacks.

As of now, only ideal alerts (only TPs) have been considered and fed into the alert
correlation methods. However, in real-world applications, alert correlation has to deal
with FPs and FNs. In preliminary measurements, we introduced a certain confidence level
that steers the interspersion of FPs and FNs with a certain probability. From the binary
classification result providing the amount of TPs, TNs, FPs, and FNs, we can derive the so-
called F1-score as the harmonic mean of precision and sensitivity by F1 = TP

TP+ 1
2×(FP+FN)

,
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which is often used as a metric on imbalanced data [7]. The effects of FPs and FNs on
the clustering result are exemplarily discussed for the Bot attack scenario for which both
SOAAPR and GAC achieved good results, and the number of alerts is more meaningful
compared to Infiltration. Introducing approximately 190 FPs and FNs yields a F1 = 0.90,
and SOAAPR as well as GAC perfectly capture alerts into two clusters as with only
TPs (Table 4), but both generate additional clusters. Those are denoted as ghost-clusters
(SOAAPR—three, GAC—two) and are mainly caused by the FPs. The FNs only reduce
the amount of alerts inside the clusters and can be seen less critical since the consecutive
signature generation will also work if the cluster still contains a majority of representative
alerts characterizing the attack. Injecting a higher number of FPs (approximately 1900)
and FNs (approximately 400), yielding F1 = 0.58, will again cause the generation of
the two Bot-related clusters (with the reduced amount of FN-alerts) but is associated
with a significantly higher number of ghost-clusters (SOAAPR—40, GAC—28). However,
SOAAPR can easily be adjusted to deal with those ghost-clusters, which, in total, have an
average size of 40 alerts by increasing the min_alerts parameter to 100. Then, SOAAPR
reduces the number of ghost-clusters to two while still capturing the two Bot-related clusters
in approximately 4.6 s. GAC, in contrast, has no possibility of reducing ghost-clusters and
takes approximately 79 s.

5.2. SOAAPR Signaturing

For each attack scenario in either CICIDS2017 (sigcom, sigattr and sigtemp) or CI-
CIDS2017 and CSE-CIC-IDS2018 (sigattr and sigtemp), signatures are derived, and the
similarity in between each attack scenario’s signature is computed. As a result, we ob-
tained an upper triangular matrix of similarity values from which we applied hierarchi-
cal/agglomerative clustering using the average-linkage method yielding a dendrogram
for the sake of better visualization. As of now, we reserve evaluations showing the effects
of FPs and FNs on the signature comparison for future work and only consider ideally
clustered attack scenarios.

5.2.1. sigcom

Table 5 provides the sigcom similarity values between the 11 evaluated CICIDS2017
attack scenarios. It can clearly be seen from the table that attack scenarios that share the
same typical communication relation between attacker and victim have high similarity.
For instance, the brute force FTP-/SSH-Patator attacks have a strong correlation in terms of
sigcom with a value of 0.9905 in the range of (0, 1) since a single attacker IP with varying
source ports attacks a single victim IP and a dedicated port (either FTP—21 or SSH—22).
In contrast, Heartbleed, characterized by a single attacker IP from a single port attacking
a single victim IP on a single port, differs significantly from all other attack scenarios
and only shares a value of approximately 0.3 in similarity with the FTP and SSH brute
force attacks. All three DoS-like attacks share a similar communication pattern having a
similarity value of above 0.97 amongst each other.

To guide the reader better, Figure 8 visualizes the results of Table 5 in a dendrogram.
Attack scenarios sharing high similarity are clustered together, such as in the DoS-attacks
or the FTP-/SSH-Patator attack scenarios. The web attacks, Brute Force, XSS and Sql Injection,
are extremely similar as well.

Most of the attack scenarios strongly share a similar communication relation with
values approximately above 0.7 with respect to Table 5. In most of the attack scenarios,
the attacker and victim share an oto-relation in terms of IP and an mto-relation (referring
to [40]) in terms of port information. The main difference is the amount of varying source
ports, which is higher the more alerts are present. Thus, DoS-like attacks having a larger
amount of varying source ports lead to more nodes within the Gcom graph and thus a
slightly less similar communication relation, as, for instance, with web attack scenarios.
In contrast, Bot and Infiltration differ from the rest of the attack scenarios, and Heartbleed,



Electronics 2021, 10, 2160 30 of 42

especially, is the only attack scenario that is characterized by an oto communication relation
in terms of IP and port information, thus being the least similar to all others.

Table 5. The upper triangular matrix of sigcom similarities between CICIDS2017 attack scenarios (WA—Web Attack).
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One of the intentions of introducing a motif-approach by Haas et al. in [9] was to pro-
vide the most fine-grained attack characterization as possible, with GAC only identifying
four pre-defined cluster classes (oto, otm, mto and mtm) [40]. Although containing slightly
more information within the graph-structure by indirectly incorporating the amount of
varying IP or port information in the form of nodes in the graph, as assumed, sigcom alone
does not characterize individual attack scenarios in a more fine-grained way. Excluding
the privacy-preservation capability of the motif-approach, one might even leverage the
pre-defined cluster classes and count the frequency of unique IP or port data values to
obtain similar information gain as with sigcom, which—especially with a higher number
of clustered alerts—might be far less computationally complex than the graph-based ap-
proach. The higher the number, the longer it takes to generate each attack’s signature.
Infiltration with 36 alerts takes only about 0.02 s, whereas Bot with approximately 2000
alerts takes around 10 s. FTP-/SSH-Patator brute force clusters with around 14,000 alerts
take around 3 min, and the three DoS-attacks, including Heartbleed, with respect to Table 2,
take approximately 10 min to be generated. The processing time for sigcom shows the
exponential behavior over the number of alerts.

Heartbleed
Bot
Infiltration
DoS GoldenEye
SSH-Patator
FTP-Patator
DoS slowloris
DoS Slowhttptest
Web Attack  Sql Injection
Web Attack  Brute Force
Web Attack  XSS

Figure 8. Hierarchical clustering of similarities between CICIDS2017 attack scenarios based on sigcom.

5.2.2. sigattr

In order for the RF classifier to generate feature importance scores, each attack scenario
has been extracted into a separate CSV file only containing benign and no malicious data.
Since DoS-like, Portscan or Brute Force attacks are typically not the scope of OD algorithms,
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we limit ourselves to the web attack (Brute Force, XSS, Sql Injection), Infiltration and Bot
scenarios of CICIDS2017 (refer to Table 2) and CSE-CIC-IDS2018 (refer to Table 6).

Table 6. A selection of attack scenarios with respective characteristics of the CSE-CIC-IDS2018 dataset.

Dataset Attack Type # Instances Outliers (%) Duration (min)

Thursday-22-02
Brute-Force-Web-0 250 0.023 56.01
Brute-Force-XSS-0 81 0.008 0.90
SQL-Injection-0 31 0.003 13.35

Friday-23-02
Brute-Force-Web-1 363 0.035 48.85
Brute-Force-XSS-1 151 0.014 69.02
SQL-Injection-1 50 0.005 0.97

Wednesday-28-02
Infiltration-1 42,760 6.974 22.25
Infiltration-0 26,111 4.259 6.00

Thursday-01-03
Infiltration-3 54,311 16.403 96.98
Infiltration-2 38,752 11.704 57.98

Friday-02-03
Bot-0 190,240 18.143 473.27
Bot-1 95,951 9.151 89.82

Founded on the assumption that the feature importance is a representative character-
istic for an attack scenario, as discussed by the authors in [61], two exemplary signatures
sigattr generated by RF’s feature importance scoring applied on both data sources CI-
CIDS2017 and CSE-CIC-IDS2018 are provided in Figure 9. In order to compare attack
scenarios from both datasets, the same set of 78 features had to be applied. With respect
to Figure 9a, the TotLen_Fwd_Pkts and Subflow_Fwd_Byts are the most important features,
which is also stated in [61] for the Infiltration attack scenario. For the web attack Brute Force
scenario, the most important feature is the Init_Fwd_Win_Byts. Since [61] only provides
feature importance for web attacks in general and not individually, as done in this work,
the other two highly important features RST_Flag_Cnt and ECE_Flag_Cnt, with respect to
Figure 9b, seem characteristic for this sub-attack category.

Choosing an appropriate γ is not only crucial for the amount of information an alert
has to carry but also affects the similarity between the sigattr of two attack scenarios.
Therefore, we have computed similarity in the form of the Bhattacharyya distance over
the top-γ-features between each two attack scenarios. Figure 10 shows the results of
this measurement, respectively, for the two strongly similar attack scenarios of the CSE-
CIC-IDS2018 dataset SQL-Injection-0 and SQL-Injection-1, as well as the highly dissimilar
scenarios of SQL-Injection-0 from CSE-CIC-IDS2018 and Bot from CSECIC2017.

From those measurements, we obtain multiple insights on γ’s effects. Firstly, with low
γ values, attack scenarios are less similar, in general, but dissimilar attack scenarios have a
higher magnitude for the Bhattacharyya distance. For instance, the Bhattacharyya distance
for low γ in Figure 10a is approximately 0.5 and for the dissimilar attack scenarios in
Figure 10b approximately 1.2. Secondly, the more similar two arbitrary attack scenarios are,
the more sharply the curve will fall to lower similarity values. Thirdly, all attack scenarios
reach a stationary point for the Bhattacharyya distance with a certain amount of features,
whereby increasing γ does not affect the similarity. In turn, this also means that a certain
amount of information to be transferred with alerts is enough, and more information does
not improve the result. However, this also means that the higher the γ, the more decisive
the magnitude of the stationary point of the Bhattacharyya distance is in distinguishing
between any two attack scenarios, and a clear differentiation deteriorates. The reason
behind this is that a mainly limited amount of features is representative for an attack
scenario. Thus, if using more than these, the importance of the representative features
is negatively influenced by the less important ones, meaning that feature importance of
benign data takes over. Therefore, fourthly, a decent range for γ considering the feature set
used in our measurements is approximately from 10 to 50, whereas if γ is set closer to 10,
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it will benefit highly from similar attacks, such as a XSS attack with another XSS attack,
while γ closer to 50 will benefit attack scenarios of the same category, such as web attacks
in general.
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(b)
Figure 9. Two exemplary sigattr using the same set of 78 features for the attack scenarios (a) Infiltration of CICIDS2017
and (b) Brute-Force-Web-0 in CSE-CIC-IDS2018 (two colors for feature importance on all samples and only on anomalous
samples—sigattr).

Figure 11 depicts the hierarchically clustered results of attack scenario similarity
between a selection of CICIDS2017 and CSE-CIC-IDS2018 attacks based on sigattr with γ
set to 30. It can clearly be seen that related attack scenarios such as xss_18_0 and xss_18_1,
sql_18_0 and sql_18_1, brute_force_18_0 and brute_force_18_1, bot_18_0 and bot_18_1 or the
Infiltration attacks from CSE-CIC-IDS2018 are highly similar.

In general, strong similarity between similar CICIDS2017 and CSE-CIC-IDS2018 attack
scenarios, such as infiltration_17 and infiltration_18_X, is not provided. Taking a look at the
histogram comparison of two dissimilar examples from both datasets, sql_18_0 and sql_17
(Figure 12a) as well as brute_force_18_1 and brute_force_17 (Figure 12b), reveals that despite
some feature similarity, both are afflicted with a high number of irrelevant features for the
comparison. For instance, the two most important features of sql_18_0, RST_Flag_Cnt and
ECE_Flag_Cnt are completely irrelevant to sql_17 despite the rest of the features showing
similarity. Equally, with respect to Figure 12b and the importance of Init_Fwd_Win_Byts
and Init_Bwd_Win_Byts for web attacks [61], both attack scenarios show strong feature
importance for only one of those two features. Furthermore, for each attack, some features
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are more important for one attack, while they are completely irrelevant for others, such as
Active_Max/Min/Mean for brute_force_17.
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(b)
Figure 10. The dependency of γ on the Bhattacharyya distance (similarity) of two highly similar (a)
and dissimilar (b) attack scenarios.

xss_18_0
xss_18_1
heartbleed_17
bot_18_0
bot_18_1
sql_17
xss_17
brute_force_17
infiltration_18_0
infiltration_18_1
infiltration_18_2
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sql_18_1
brute_force_18_0
brute_force_18_1
bot_17
infiltration_17

Figure 11. Hierarchical clustering of similarities between a selection of CICIDS2017 and CSE-CIC-
IDS2018 attack scenarios based on sigattr for γ = 30.

The infiltration-attacks between CICIDS2017 and CSE-CIC-IDS2018 can hardly be
compared since the infiltration scenarios in CSE-CIC-IDS2018 include the portscanning
attack steps, which are not considered within CICIDS2017. This is also confirmed by
the significantly higher number of alerts associated with the 2018 infiltration scenarios
reasoned by the portscan conducted after the attacker successfully gained access to the
victim machine. Although similar CICIDS2017 and CSE-CIC-IDS2018 attack scenarios
seem to have a weak similarity, the curvature characteristics from the γ-dependency-curves
reveal better insights. Thus, with respect to Figure 10, we applied Gaussian Filtering to the
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curves in order to smooth them and better visualize their curvature. In Figure 13, a sample
selection of smoothed γ-dependency-curves for similar and dissimilar attack scenarios from
CICIDS2017 and CSE-CIC-IDS2018 is given. Taking into account measurement deviations,
curves from similar attack scenarios, sql_18_0 and sql_18_1, and even sql_18_0/1 and sql_17,
show monotonic decreasing behavior, while the curves of dissimilar attack scenarios, such
as all Sql-Injection-ones in Figure 13 with bot_17, contain concave sections. Although not
clustered together in the dendrogram, similarity for similar 2017 and 2018 attack scenarios
can be derived from the curvature characteristic. Nevertheless, there might be various
reasons for the the poor result, such as the poor quality of the datasets, e.g., by a slight
difference in feature generation using an older version of CICFlowMeter for CICIDS2017
or due to slightly different attacks used. Those could mimic changes in similar attack
campaigns as time passes since, in real-world scenarios, adversaries change their strategy
as well. However, further evaluation is necessary in future work.
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(b)
Figure 12. A comparison of sigattr for (a) SQL-Injection-0 of CSE-CIC-IDS2018 (blue) with Web Attack—Sql Injection of
CICIDS2017 (orange) and (b) Brute-Force-Web-1 of CSE-CIC-IDS2018 (blue) with Web Attack—Brute Force of CICIDS2017
(orange) for γ = 30.
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Figure 13. Smoothed γ-dependency curves using Gaussian Filtering for a selection of similar and
dissimilar attack scenarios.

The results of the average processing times to generate sigattr for the evaluated attack
scenarios is provided in Table 7. In contrast to the exponentially increasing processing time
of sigcom, the generation time for sigattr shows linear behavior with the number of alerts
inside a cluster. The mean time per alert in our evaluation is approximately 7 µs.

Table 7. The average processing time to generate sigattr for a selection of attack scenarios of CICIDS2017 and CSE-CIC-
IDS2018.
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5.2.3. sigtemp

In order to find a histogram setting that satisfies all attack scenarios best, we computed
the descriptive statistics maximum, minimum, mean and median values of ∆ts for each
attack scenario in CICIDS2017 and CSE-CIC-IDS2018. Either because of the inaccurate
timestamping in CICIDS2017, the misleading labeling, whereby multiple attack scenarios
of the same category happening at different times are combined together, e.g., as for
Infiltration_17 and PortScan_17, we do not take into account the maximum ∆t values to find
a decent maximum bin parameter for the sigtemp histogram. Excluding the statistical strays
in the maximum values for the CICIDS2017 attack scenarios, Bot_17, DoS_slowloris_17,
Infiltration_17 and PortScan_17, a decent maximum bin value for the histogram is 100 s
(mean of residing values). Furthermore, Heartbleed_17 is not a very representative attack
scenario since it consists of 11 alarms likely reasoned in an attacker script that sends 11
Heartbeat messages at an interval of exactly 120 s to exploit the vulnerability. In a different
scenario, an attacker might modify this frequency resulting in another ∆t statistic. Referring
to minimum, mean and median values, a decent fine-grained value for the bin width is
0.1 s (median of ∆ts’ median).

It is again noted that in real-world applications, one might apply different histogram
types, as proposed in Section 3.4.3, such as short, mid or long, to adjust the number and width
of the bins depending on the order of magnitude of ∆ts. Thus, for instance, DoS-like attacks
with lower mean and median ∆t values than other attack types could be characterized
as short attacks in advance with respect to the extremely low ∆t values before generating
signatures with significantly smaller values for the maximum bin value and bin width.

Figure 14 depicts the hierarchically clustered results of attack scenario similarity
between CICIDS2017 and CSE-CIC-IDS2018 attacks based on sigtemp, with the mentioned
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setting of maximum bin of 100 s and a bin width of 0.1 s. It can clearly be seen that
similar attack scenarios, such as DoS-like attacks, infiltration, brute force or web attacks, are
clustered together due to their high level of similarity. For instance, DoS-like attacks, such
as DoS_Hulk_18 and DDOS_HOIC_18 as well as DoS_Hulk_17 and DDoS_17, which are
heavy DoS-attacks, are clustered together. Even the same DoS-attacks but from different
datasets, DoS GoldenEye_17 with DoS-Goldeneye_18 and the less intensive DoS slowloris_17
and DoS-Slowloris_18, show high similarity.

Infiltration 17

Heartbleed 17

Web Attack-Sql Injection 17

Web Attack-XSS 17

Bot 17

Web Attack-Brute Force 17

DoS GoldenEye 17

DoS-Goldeneye 18

PortScan 17
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Figure 14. Hierarchical clustering of similarities between CICIDS2017 and CSE-CIC-IDS2018 attack
scenarios based on sigtemp.

Notably, the same attack scenarios that were used multiple times in CSE-CIC-IDS2018
are, in most cases, clustered as significantly similar, such as all four Infiltration attacks,
Bot-0_18 and Bot-1_18, SQL_Injection-0_18 and SQL_Injection-1_18 or Brute_Force-Web-0_18
and Brute_Force-Web-1_18 as well as Brute_Force-XSS-0_18 and Brute_Force-XSS-1_18.

Figure 15 demonstrates the high level of similarity leveraging sigtemp between the four
timely different and unrelated infiltration attack scenarios taken from CSE-CIC-IDS2018.
For the sake of visualization and with respect to the descriptive statistics maximum,
minimum, mean and median for those attack scenarios, we set the histogram values to a
maximum bin value of 1 s and the bin width to 0.01 s.

Although not clustered in Figure 14, similarity can be seen between comparable
attack scenarios taken from different datasets of CICIDS2017 and CSE-CIC-IDS2018 when
adapting the histogram settings. This is shown with the XSS and Brute Force web attacks
in Figure 16. The histogram is set to a maximum bin value of 30 s and a bin width of
1 s. However, the less fine-grained binning of the CICIDS2017 attacks can clearly be seen,
which is reasoned in the way timestamps were generated, as explained in Section 4.2.

In contrast to the average processing times for sigattr, the processing of sigtemp is split
into two parts—the generation of ∆ts based on timestamps of the timely sorted alerts
of a cluster and the generation of the histogram, the actual sigtemp. The result of the
average processing times for the attack scenarios of CICIDS2017 is provided with the same
histogram setting of a maximum bin value of 100 s and bin width with 0.1 s in Table 8
and for CSE-CIC-IDS2018 in Table 9. As with sigattr, the processing times of sigtemp shows
the linear behavior with a mean time per alert for ∆ts generation of approximately 200 µs
and for histogram generation of approximately 4.5 µs per alert. The latter depends on the
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histogram setting and increases to a value of approximately 138 µs per alert for a maximum
bin value of 550 s and bin width with 0.01 s, for instance.
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Figure 15. A comparison of ∆t histograms of four distinct Infiltration attack scenarios (a–f) present in
CSE-CIC-IDS2018.
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Figure 16. A comparison of ∆t histograms of four distinct web attack scenarios—XSS (a,b) and Brute
Force (c,d)—present in CICIDS2017 and CSE-CIC-IDS2018.

Table 8. The average processing time to generate sigtemp for a selection of attack scenarios of CICIDS2017.
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Generating ∆ts (s) 0.1873 0.0810 0.0030 0.0053 15.6347 28.8301 0.7102 0.6742 1.2875 19.6687 0.9818 0.7314 2.4444 0.0018
Generating
Histograms (ms) 0.69 0.58 0.51 0.54 13.78 24.49 1.14 1.10 1.57 17.06 1.38 1.18 0.76 0.57
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Table 9. Average processing time to generate sigtemp for a selection of attack scenarios of CSE-CIC-IDS2018.
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Generating ∆ts (s) 0.0484 0.0701 0.0088 0.0142 0.0214 0.0400 49.1716 24.7964 10.4209 6.3606 9.4362 13.2450 170.4973 104.9426 23.1637 1.8217 0.3151 6.5640 29.9785 38.7183
Generating
Histograms (ms) 0.58 0.61 0.56 0.56 0.57 0.59 21.56 11.06 5.52 3.54 4.91 6.77 75.33 51.48 15.60 1.14 0.76 5.27 21.35 20.94

6. Conclusions and Future Work

With the advent of anomaly-based IDS to detect malicious activity in streaming
network data, especially online-capable unsupervised Outlier Detection (OD) algorithms,
novel techniques for alert correlation methods are increasingly needed. Those must be
capable to mine information from the outcome of OD algorithms without knowledge
information, such as the intrusion type, which is typically provided by misuse-based IDS.
Alerts are continuously generated from the high-volume, high-speed and high-dimensional
streaming data in the form of an alert stream, which might be afflicted to a high amount
of False Positives (FPs) and False Negatives (FNs). Human experts can no longer be
expected to handle this massive amount of alerts, and certain types of attacks are likely to
be overlooked.

Thus, this article introduces and discusses a novel framework called SOAAPR, which
is able to deal with the outcomes from online OD algorithms in multiple configuration
settings to improve the input quality for the streaming alert correlation/clustering module
in terms of reducing FPs and mitigating FNs. For this, alerts are equipped, apart from
the typical intrinsic attributes, such as IP, port or timestamp information, with feature
importance scores and the respective outlier scores. The core component of SOAAPR
clusters the streaming alerts according to their attributes’ similarity. The resulting clusters
can evolve over time and, if not discarded in the case of irrelevant clusters, can be saturated,
meaning that these clusters are potentially capturing attack scenarios. In order to ensure a
short response time for security analysts, the alarms of those clusters are promptly fed into
a consecutive module that generates three types of signatures, denoted as sigcom, sigattr
and sigtemp. These fingerprint-like characteristics represent the attack scenarios in terms of
the attack’s communication behavior, their cause in the data’s features and their temporal
sequence of associated alerts. The signatures can then be used to find similarities between
attack scenarios or seek for similar signatures that can be collected in a knowledge base or,
e.g., shared with other companies or institutes.

The evaluation leveraging the widely-known CICIDS2017 and CSE-CIC-IDS2018
datasets is split into two parts. First, the streaming clustering module of SOAAPR is
compared against a graph-based competitor, the alert clustering component of GAC [40].
We rely on four different metrics, the completeness, the soundness, the Jaccard index and
the elapsed time for alert processing the datasets, as representatives for the computational
performance. Since GAC’s complexity increases with the graph size, chunk processing
with 5000 alerts had to be applied. SOAAPR is configured with hyperparameters that
are, for the sake of equal comparison, similar to GAC and are even set to capture attack
scenarios with a low number of associated alerts. Second, the signaturing functionality
of SOAAPR, generating and comparing sigcom, sigattr and sigtemp, is the subject of our
experimental investigations. Thus, we investigate the similarity between attack scenarios’
signatures and their average computing time in our experiments.

The discussion of results for alert clustering reveals that SOAAPR reliably clusters
attack scenarios as good as GAC while being significantly more efficient in terms of
processing time. In the best case, SOAAPR clusters DoS-attack scenarios faster by a factor
of 190 compared to GAC. Although it may be that attack scenarios are split into a couple
of clusters, even in the worst case for the web attacks, SOAAPR reduces the associated
2180 alerts into only 24 clusters, which is a compression factor of magnitude 91. Adjusting
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SOAAPR’s hyperparameters even aids to notably reduce so-called ghost-clusters, which are
mainly caused by FPs. Given the multitude of different attacks and their characteristics, we
propose to leverage multiple SOAAPR instances each parameterized with hyperparameters
specifically for each attack type for real-world application. A more holistic evaluation of
the effects of FPs and FNs on the clustering result is topic for further work.

The discussion of results with respect to SOAAPR’s signaturing reveals that all three
signature types generally can be used to characterize attacks and find similarities between
attack categories. For sigcom, an attack scenario similarity of up to 95.05% could be ob-
tained. However, its processing time shows exponential behavior over the number of alerts.
In order to compute and compare sigattr, the supervised Random Forests classifier has
been utilized to generate feature importance scores in the operation modes single system—
multiple algorithms, in which multiple classifiers work in parallel to improve alert quality.
While yielding strong similarity between comparable attack scenarios of the same dataset,
similarity could even be shown with sigattr between similar scenarios of different datasets
by investigating the curves’ curvature depending on the number of top-performing fea-
tures. The results comparing the timing behavior of a total number of 34 attack scenarios,
captured with sigtemp, yields a strong similarity especially between similar attack scenarios
from the same datasets. In contrast to sigcom, the processing time of sigattr and sigtemp is
significantly faster and shows linear behavior. Overall, some congruent attack scenarios
from different datasets showed weak similarity for sigtemp, which is mainly caused by the
poor quality of the available datasets.

Thus, a topic for future work is to evaluate SOAAPR on other datasets that provide,
for instance, better timestamping for sigtemp evaluation or contains IP and port information
for sigcom evaluation. With respect to sigattr, as of now, we relied on the supervised
RF—SHAP—feature importance scoring functionality for better result interpretability.
However, in future evaluation, we want to replace RF with an online unsupervised OD
algorithm equipped with a feature importance scoring functionality, such as Loda [23]
or PCB-iForest [13]. As we showed that the ambitious aim to exploit the outcome of OD
algorithms in order to generate an attack pattern generally works, we would also want to
investigate the impacts of introducing FPs and FNs on signature comparison.

Since SOAAPR’s streaming clustering is sensitive to the timing behavior of an attack
and its associated alerts, attack scenarios might be split into multiple tiny clusters if
SOAAPR’s hyperparameters are not properly set. Thus, further research will also focus on
investigating to combine split clusters together if their overall similarity is high, e.g., by
measuring the cluster centroids distances or leveraging the comparison of signatures sigcom,
sigattr and sigtemp. Split clusters with highly similar signatures might likely be assigned
to the same attack scenario. Thus, not only the clustering result might be improved but
also multi-stage attack detection might be enabled for which SOAAPR initially was not
designed, similar to the Intrusion Session Rebuilding component of IACF [48] or the Attack
Interconnection phase of GAC.
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