
Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

Translation of XML Documents into Logic

Programs

Martin Zima; Karel Jezek

Department of Computer Science & Engineering

University of West Bohemia in Pilsen

Universitni 8, 306 14 Pilsen, Czech Republic

e-mail: zima@kiv.zcu.cz; jezek_ka@kiv.zcu.cz

Abstract
The semantic web is supposed to become a characteristic phenomenon of the

worldwide web in the next decade. One of the basic semantic web tools is the

XML language. The aim of this paper is to provide information on how web

documents written in the XML language can be rewritten into logic forms

expressed as Prolog/Datalog programs. The XML language constitutes the

basis of many semantic web languages and information in XML documents is

usually retrieved with the help of procedural language called XQuery.

Retrieving based on logic formulas gives us the chance to take advantage of

deduction and this way to gain new originally hidden information.

Keywords: semantic web; logic programming; XML; Datalog language.

1. Introduction

An interesting and topical research issue is the use of logic rules (logic

program) to evaluate a query about XML documents [1]. It provides an option

to combine XML technology with the inference capabilities of logic

programming. Logic programming allows us to evaluate the queries that

require computation of a transitive closure of relations. This means that we

can query such information that is not explicitly included in the documents.

In other words, we are able to draw deductive conclusions concerning the

facts contained in the documents and in this way to find new, but originally

hidden facts. Suppose, for example, that we have an XML collection of

Martin Zima; Karel Jezek

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

scientific articles. The logic program allows a query such as: find the names of

all co-authors of the given author, including co-authors of found co-authors, etc. It

means this query evaluates the transitive closure of the relation co-author.

There are many similar tasks having something to do with transitivity of

relations, e.g. looking for a path from one place to some destination, searching

for owners of a given company (as frequently real final owners are hidden

behind the companies that transitively own other companies), etc. All

compound queries have the form of logic formulas. Therefore it is natural to

use the logic query languages and, consequently, transform XML documents

into expressions written in the logic language. This task is particularly

interesting for us, as a few years ago we implemented an experimental

deductive system [2], translating the Datalog language into the PL/SQL

procedural language [3], which is used in the DBMS Oracle.

The use of Datalog instead of Prolog has some pragmatic reasons too. A

database-oriented system with a professional database management system is

able to process large data collections within a reasonable time. This is

particularly important in the case of web documents processing.

2. Logic programming and Datalog

To be able to explain the method of translation, let us briefly introduce some

principles of logic programming and its form used in the language Datalog

[4]. Datalog is a slightly modified version of the primary logic language

Prolog [5] and is tailored to database processing.

The logic program consists of a set of facts, a set of logic rules and a query.

On the basis of the logic program execution, a set of new facts can be inferred

and delivered as the query result. Every logic program can contain constants

and variables. The names of variables begin with upper case letters. The

exceptions are anonymous variables, i.e. variables whose values we are not

interested in. They are marked with an underscore. Names of predicates

begin with lower case letters and predicates are distinguished by the number

of their arguments as well. Facts have the common form

predicate_name(list of constant arguments).

Rules have the common form head :- body. The symbol “:-” means

“if” and expresses an implication between the truth of the body and head

predicates. The head is a predicate name, the arguments of which are mostly

variables. Such variables are evaluated during the program execution and in

case the head predicate is TRUE, they are returned as the result of the rule

Translation of XML Documents into Logic Programs

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

processing. The rule body consists of predicates whose arguments have to

contain all variables from the rule head. The head predicate becomes TRUE if

there exist such values of variables in the logic program that the values of all

predicates in the rule body are TRUE too. If such values of variables do not

exist, the rule is evaluated as FALSE. The query consists of a predicate whose

arguments are variables or constants. The deductive system tries to find

values of query variables which are derivable from existing program facts

with the possible use of program rules. The query succeeds if such values

exist, otherwise, the query predicate has the value FALSE and the query

answer is NO.

Our experimental deductive system implements an extended version of

the Datalog language. The current extensions include relational operators,

assignment and not operation for negation.

3. Translation of XML documents

Advantage of logic programming for XML documents querying and

processing has inspired other researchers too. To our knowledge, a similar

issue was described by Jesús M. Almendros-Jiménez [6]. He proposed a

possible solution to the problem of converting XML documents to a logic

program written in Prolog. His solution uses a list structure which describes

data of the XML document and represents the result of the XPath query [7].

The rules of the logic program define the structure of the XML document (the

way the elements are nested within other elements). He introduces specific

functions with a different number of arguments to specify the XML

documents structure, but the process of functions evaluations is missing. The

resulting logic program contains all data of the input XML document in a set

of facts. The structure of the XML document is fixed in logical rules. This

means that each XML document is transformed into a different set of rules.

On the contrary the method proposed by us generates a logic program

which consists of universal rules. That is, two different logic programs

(results of the transformation of two different XML documents) contain the

same logic rules. Differences between the structures of various XML

documents are captured by the facts. This technique also eliminates the need

to work with lists that our implementation of Datalog still lacks.

Martin Zima; Karel Jezek

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

3.1. Construction of the set of facts

To show our method of generating a set of logic facts, we need to choose some

example of an input XML document. Such suitable candidate is e.g.

books.xml, a modified XML document describing a library content, which

was adopted from [6]. The text of the XML document, accompanied by a

number of lines, is shown in Fig. 1.

As [6] shows, the information “Buneman is the author of the first book”

describe this fact:

author(′Buneman′, [2, 1, 1], 3, ′books.xml′).

- The first argument is the value of the element <author>.

- The second argument defines the XML document structure: Number 2

means: the element is the second one inside another element. The first 1

means that the element <book> is the first one inside another element

<bookshelf>. The second 1 stands for the element <bookshelf> which

is the root element of the document.

- The remaining arguments do not require further explanation.

Before explaining the above-presented transformations, let us modify the

sample XML document so it is consistent with the standards of the Semantic

Web. An adapted version of the XML document is shown in Fig. 2. The

above-mentioned information "Buneman is the author of the first book“, will be

 1 <?xml version="1.0" ?>

 2 <bookshelf>

 3 <book year="2003">

 4 <author>Abiteboul</author>

 5 <author>Buneman</author>

 6 <author>Suciu</author>

 7 <title>Data on the Web</title>

 8 <review>A fine book.</review>

 9 </book>

10 <book year="2002">

11 <author>Buneman</author>

12 <title>XML in Scotland</title>

13 <review>The best ever!</review>

14 </book>

15 </bookshelf>

Figure 1: XML document books.xml

Translation of XML Documents into Logic Programs

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

written into a triple of auxiliary logic facts that define the predicate xml. In

this way we simultaneously eliminate the need to use the data structure list.

xml(5, ′dc:creator′, 2, 3).

xml(5, ′bk:book′, 1, 2).

xml(5, ′bk:bookshelf′, 1, 1).

The predicate xml mostly shows only the structure of the document. The

first argument of the xml predicate holds the row number of the input XML

document. This value will be the same for all logic facts defining the predicate

xml, i.e. facts which describe a specific occurrence of the element written in a

given row of the XML document. The other three arguments define the path

in the XML document, i.e. the path from the given element to the root element

of the document. To be specific, on line 5 there is recorded the element

<dc:creator>, whose parental element is <bk:book>. The element

<bk:book> contains a total of 5 children, of which the second child element

is <dc:creator> located on line 5. The element <bk:book> has a parental

element <bk:bookshelf>. This element contains 2 children (books). The

element <dc:creator> from line 5 is contained in the first element

<bk:book>. The last of the three facts says that the described

<bk:bookshelf> element is the root element of the document.

 1 <?xml version="1.0" ?>

 2 <bk:bookshelf

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:bk="http://example.org/books/">

 3 <bk:book year="2003">

 4 <dc:creator>Abiteboul</dc:creator>

 5 <dc:creator>Buneman</dc:creator>

 6 <dc:creator>Suciu</dc:creator>

 7 <dc:title>Data on the Web</dc:title>

 8 <bk:review>A fine book.</bk:review>

 9 </bk:book>

10 <bk:book year="2002">

11 <dc:creator>Buneman</dc:creator>

12 <dc:title>XML in Scotland</dc:title>

13 <bk:review>The best ever!</bk:review>

14 </bk:book>

15 </bk:bookshelf>

Figure 2: Adapted XML document

Martin Zima; Karel Jezek

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

The data itself (names and attributes of elements, text content, etc.) has to

be saved through other predicates. Let us introduce for this purpose a piece of

predicate data which will contain the line number, the element name that

contains the relevant text information and the value, i.e. the text content of

this element. The fact that “Buneman is the author of the first book” is expressed

as follows:

xml(2, 'bk:bookshelf', 1, 1).

xml(3, 'bk:book', 1, 2).

xml(3, 'bk:bookshelf', 1, 1).

xml(4, 'dc:creator', 1, 3).

xml(4, 'bk:book', 1, 2).

xml(4, 'bk:bookshelf', 1, 1).

xml(5, 'dc:creator', 2, 3).

xml(5, 'bk:book', 1, 2).

xml(5, 'bk:bookshelf', 1, 1).

xml(6, 'dc:creator', 3, 3).

xml(6, 'bk:book', 1, 2).

xml(6, 'bk:bookshelf', 1, 1).

xml(7, 'dc:title', 4, 3).

xml(7, 'bk:book', 1, 2).

xml(7, 'bk:bookshelf', 1, 1).

xml(8, 'bk:review', 5, 3).

xml(8, 'bk:book', 1, 2).

xml(8, 'bk:bookshelf', 1, 1).

xml(10, 'bk:book', 2, 2).

xml(10, 'bk:bookshelf', 1, 1).

xml(11, 'dc:creator', 1, 3).

xml(11, 'bk:book', 2, 2).

xml(11, 'bk:bookshelf', 1, 1).

xml(12, 'dc:title', 4, 3).

xml(12, 'bk:book', 2, 2).

xml(12, 'bk:bookshelf', 1, 1).

xml(13, 'bk:review', 5, 3).

xml(13, 'bk:book', 2, 2).

xml(13, 'bk:bookshelf', 1, 1).

data(4, 'dc:creator', 'Abiteboul').

data(5, 'dc:creator', 'Buneman').

data(6, 'dc:creator', 'Suciu').

data(7, 'dc:title', 'Data on the Web').

data(8, 'bk:review', 'A fine book.').

data(11, 'dc:creator', 'Buneman').

data(12, 'dc:title', 'XML in Scotland').

data(13, 'bk:review', 'The best ever!').

attribute(3, 'bk:book', 'year', '2003').

attribute(10, 'bk:book', 'year', '2002').

Figure 3: Generated facts

Translation of XML Documents into Logic Programs

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

data(5, ′dc:creator′, ′Buneman′).

Attributes and values will also be recorded in the form of facts. We can

introduce the predicate attribute containing the line number, the element

name by which an attribute is defined, the attribute name and finally its

value. For example, as our document defines only one attribute year within

the element <bk:book>, the corresponding fact will have the form:

attribute(3, ′bk:book′, ′year′, ′2003′).

Fig. 3 shows the full set of facts defining the predicates xml, data and

attribute, which were obtained by translation from the XML document in

Fig. 2.

3.2. Universal rules

The logic facts defining the predicate xml hold the structure of the input XML

document. Therefore, it is possible to determine which element is a part

(descendant) of another element. As this process is recursive we can define an

auxiliary predicate intersection. This predicate is defined by two rules,

which look for the intersection of sets of facts determining the predicate xml.

Each set describes an element from one line of the XML document. The set of

logic facts from Fig. 3 defines 11 various sets in total. To demonstrate, we

selected two sets which describe the elements listed in lines 3 and 6.

xml(3, 'bk:book', 1, 2).

xml(3, 'bk:bookshelf', 1, 1).

xml(6, 'dc:creator', 3, 3).

xml(6, 'bk:book', 1, 2).

xml(6, 'bk:bookshelf', 1, 1).

At first sight it is clear that both sets have three common arguments:

'bk:bookshelf', 1, 1. They describe the root element of the XML

document, which must be specified in any set of facts defining the predicate

xml. The form of rules defining the predicate intersection is as follows:

Martin Zima; Karel Jezek

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

intersection(Line1, Line2, Element, N, 1) :-

 xml(Line1, Element, N, 1),

 xml(Line2, Element, N, 1),

 Line1 < Line2.

The above-mentioned sets also have another three common arguments:

'bk:book', 1, 2. The value 2 defines the level of nesting of the element,

the value 1 indicates the root element. To ensure that these two facts will also

be included in the intersection, the intersection must include the fact defined

at a lower level. This results in the following recursive rule:

intersection(Line1, Line2, Element, N, P2) :-

 xml(Line1, Element, N, P2),

 xml(Line2, Element, N, P2),

 P1 := P2 – 1,

 intersection(Line1, Line2, _, _, P1).

The pairs of line numbers, which are the results of an evaluation of the

predicate intersection, do not guarantee so far that on these XML lines

there are written two immediately nesting elements, e.g., that on Line2 there

is written such element, whose parent is written on Line1. This condition

applies only in the following case. With Line1 there is associated such a set

which is identical to the intersection of both sets and the second set,

associated with Line2, contains one more fact. This condition is true for

elements on lines 3 and 6 of the XML document, but it is false in the case of

elements on line 4 and 7. The following rule describes this condition.

child_lines(Line1, Line2) :-

 intersection(Line1, Line2, _, _, P1),

 P2 := P1 + 1,

 not xml(Line1, _, _, P2),

 xml(Line2, _, _, P2),

 P3 := P2 + 1,

 not xml(Line2, _, _, P3).

XML documents often contain deeply nested elements. We call nested

elements the descendants of a surrounding element. The nesting has to be

verified. The following recursive predicate will do this activity.

Translation of XML Documents into Logic Programs

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

descendant_lines(Line1, Line2) :-

 child_lines(Line1, Line2).

descendant_lines(Line1, Line3) :-

 child_lines(Line1, Line2),

 descendant(Line2, Line3).

To make our list of universal rules complete, we have to add a rule

detecting which element is on the specified line. This rule must be used in

case of elements without any attributes, e.g. the element <bookshelf> (see

Fig. 1). The rule element_line looks for the specified number of such line

element (in the set of predicates xml) which has the greatest value of the last

argument, i.e. the level of nesting.

element_line(Line, Element) :-

 xml(Line, Element, _, P1),

 P2 := P1 + 1,

 not xml(Line, _, _, P2).

All listed and described logic rules are universal. If we use the proposed

transformation on two different XML documents, the resulting logic

programs will contain different set of facts, but the logic rules will be the

same.

4. Queries

The logic program is complete if it contains a query we want to evaluate.

Datalog has the basic form of a query:

?- predicate(list of arguments).

For the formulation of a query, it is usually necessary to define additional

predicates in the form of one or more logic rules. This approach is used for all

queries listed below.

The first query looks for the names of all authors participating in books

published in 2003. The rule defining the predicate authors_2003 and its

corresponding query are as follows:

Martin Zima; Karel Jezek

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

authors_2003(Author) :-

 attribute(Line1, 'bk:book', 'bk:year', '2003'),

 data(Line2, 'dc:creator', Author),

 descendant_lines(Line1, Line2).

?- authors(Author).

The rule looks for all lines (see variable Line1) where books issued in

2003 are recorded and all lines (see variable Line2) where all authors existing

in the relevant facts of the predicate data are recorded. The predicate

descendant_lines searches only pairs values of variables Line1 and

Line2, which satisfy the condition that the element written on Line2 is a

descendant of the element written on Line1. So the predicate searches only

for the names of the authors of those books that were issued in 2003.

The last query is more complicated, working with several auxiliary rules.

It searches for all co-authors of a given author (e.g. Abiteboul), including all

co-authors of the searched co-authors, etc. This means it is looking for the

transitive closure of a co-authorship relation (for the connected component of

the co-authorship graph). The core of the recursive evaluation is given in a

simplified form:

coauthors(New_coauthor) :-

 coauthors(Coauthor),

 search_book(Coauthor, Book),

 serarch_new_coautor(Book, New_coauthor).

?- coauthors(Coauthor).

The predicate coauthors will bind the variable Coauthor to the name of

the previously found co-author. The predicate search_books finds out such

books in which the Coauthor participated with other co-authors. The

predicate search_new_coauthor evaluates the names of these co-authors

(the value of the variable New_coauthor). This recursive evaluation stops

when no other co-authors are found.

Translation of XML Documents into Logic Programs

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

5. Conclusions

This paper shows one possible transformation of an arbitrary XML document

into a logic program. The advantage of our transformation is the use of

universal rules. These rules are the same in all generated logic programs. The

programs differ only in facts.

The shortcoming of the proposed procedure is the assumption that the

elements in XML documents will not have mixed content. This means that the

element will contain either text or other nested elements. For example, the

element <review>A fine book.</review> has a mixed

content. It contains both text as well as a nested element . Such

information cannot be recorded into facts. If the proposed procedure

transforms the RDF, RDFS or OWL document written in XML syntax, the

elements with mixed content are not occurred.

In the future, we suppose to extend the set of universal rules and add rules

which simplify the queries formulation.

Acknowledgements

This work was partly supported by Ministry of Education, Youth and Sports

of the Czech Republic – the project 2C06009 Knowledge base tools for natural

language communication with semantic web.

Notes and References

[1] W3 CONSORTIUM. Extensible Markup Language (XML) 1.0 (Fifth

Edition), November 2008, http://www.w3.org/TR/xml/.

[2] ZIMA, M. Experimental Deductive Database System with Uncertainty [in

Czech], Ph.D. Thesis, University of West Bohemia in Pilsen, 2002.

[3] ORACLE CORPORATION. Oracle Database PL/SQL User’s Guide and

Reference 10g Release 2 (10.2), June 2005, Available at

http://www.oracle.com/.

[4] CERI, S; GOTTLOB, G; TANCA, T. What you always wanted to know

about Datalog (and never dared to ask), IEEE Transactions on Knowledge

and Data Engineering 1(1), March 1989, p. 146-66.

Martin Zima; Karel Jezek

Proceedings ELPUB2010 – Conference on Electronic Publishing

June 2010 – Helsinki, Finland

[5] STERLING, L; SAPIRO, E. The Art of Prolog, Second Edition: Advanced

Programming Techniques (Logic Programming), The MIT Press, March

1994.

[6] ALMENDROS-JIMENEZ, J.M. An RDF Query Language based on Logic

Programming, Electronic Notes in Theoretical Science, 200, 2008, p. 67-

85.

[7] W3 CONSORTIUM. XML Path Language (XPath) 2.0, January 2007,

http://www.w3.org/TR/xpath20/.

[8] W3 CONSORTIUM. RDF/XML Syntax Specification (Revisited), February

2004, http://www.w3.org/TR/rdf-syntax-grammar/.

