
Sentence Compression for the LSA-based Summarizer

Josef Steinberger �

jstein@kiv.zcu.cz

Karel Jezek�

jezek ka@kiv.zcu.cz

Abstract: We present a simple sentence compression approach for our summarizer based on la-
tent semantic analysis (LSA). The summarization method assesses each sentence by an LSA score.
The compression algorithm removes unimportant clauses from a full sentence. Firstly, a sentence is
divided into clauses by Charniak parser, then compression candidates are generated and finally, the
best candidate is selected to represent the sentence. The candidates gain an importance score which
is directly proportional to its LSA score and indirectly to its length. We evaluated the approach
in two ways. By intrinsic evaluation we found that the compressions produced by our algorithm
are better than baseline ones but still worse than what humans can make. Then we compared the
resulting summaries with human abstracts by a standard n-gram based ROUGE measure.

Keywords: Test Summarization, Sentence Compression, Latent Semantic Analysis

1 Introduction

Research and development in automatic text summarization has been growing in importance
with the rapid growth of on-line information services. The aim of automatic text summarization
is to take a source text and present the most important content in a condensed form in a man-
ner sensitive to the needs of the user and the task. In the past, most of the summarizers were
producing extractive summaries at a sentence level. Lately, the summarization field is turning
to more complicated tasks such as sentence compression. We developed a sentence extractive
method based on the latent semantic analysis where each sentence is assigned by a score that
represents its quality - the LSA score [12]. The method has been further enriched by informa-
tion about anaphoric relations [13]. Here we propose a sentence compression algorithm for the
summarizer.

Sentence compression can be linked to summarization at the sentence level. The task has
an immediate impact on several applications ranging from summarization to caption generation
[6]. Previous data-driven approaches [6, 10] relied on parallel corpora to determine what is
important in a sentence. The models learned correspondences between long sentences and their
shorter counterparts, typically employing a rich feature space induced from parse trees. In [11]
an algorithm based on Rhetorical Structure Theory1 is proposed. They use the fact that nuclei
are more likely to be retained when summarizing than satellites. The output can be then obtained
simply by removing satellites. The task is challenging since the compressed sentences should
retain essential information and convey it grammatically.
� Department of Computer Science and Engineering, University of West Bohemia, Univerzitni 22, 306 14 Plzen
1 Rhetorical Structure Theory is a descriptive theory about text organization. The theory consists of a number

of rhetorical relations that tie together text spans, and a number of recursive schemas specifying how texts are
structurally composed in a tree-like representation. Most relations are binary and asymmetric: they tie together
a nucleus (central to the writer’s goal) and a satellite (less central material).



We present here a simple sentence compression algorithm that works on a clause level. Our
aim is to simplify sentences that have many clauses by removing unimportant ones. The first
stage is to obtain compression candidates (e.g., sentences to which an original sentence can be
compressed). Further, we try to select the best candidate. An ideal candidate preserves the LSA
score of the full sentence and has a reasonable compression ratio.

In the next section we outline our LSA-based sentence extraction algorithm. In section 3
we describe the way how sentence compression candidates are obtained. Further, we discuss
the influence of the sentence length on its quality score and we define the final formula for
assessing the candidates. Section 5 covers experimental part of the research and reveals arising
problems. In the end we outline our future plans.

2 LSA-based Sentence Extraction Algorithm

LSA [7] is a technique for extracting the ’hidden’ dimensions of the semantic representation
of terms, sentences, or documents, on the basis of their contextual use. It has been extensively
used for educational applications such as essay ranking [7], as well as for NLP applications
including information retrieval [1] and text segmentation [3]. More recently, LSA has been
proposed for text summarization in [5].

The approach is the starting point for our own work. The heart of the method is a document
representation developed in two steps. The first step is the creation of a term by sentences matrix
A = [A1, A2, . . . , An], where each column vector Ai represents the weighted term-frequency
vector of sentence i in the document under consideration. The vector Ai = [a1i, a2i, . . . , ani]

T

is defined as:

aji = L(tji) · G(tji), (1)

where tji denotes the frequency in which term j occurs in sentence i, L(tji) is the local weight-
ing for term j in sentence i, and G(tji) is the global weighting for term j in the whole document.
There are many possible weighting schemes. The best performing combination we evaluated
was binary local weight and entropy global weight:

L(tji) = 1, if term j appears at least once in the sentence i; otherwise, L(tji) = 0, (2)

G(tji) = 1 − ∑
i

pji log(pji)

log(nsent)
, (3)

where pji = tji/gji, gji is the total number of times that term j occurs in the whole document
and nsent is the number of sentences in the document. If there are m terms and n sentences in
the document we will obtain an m × n matrix A for the document.

The next step is to apply Singular Value Decomposition (SVD) to matrix A. The SVD of an
m × n matrix A is defined as:

A = UΣV T (4)

where U = [uij] is an m×n column-orthonormal matrix whose columns are called left singular
vectors, Σ = diag(σ1, σ2, . . . , σn) is an n × n diagonal matrix, whose diagonal elements are
non-negative singular values sorted in descending order, and V = [vij ] is an n× n orthonormal
matrix, whose columns are called right singular vectors.



From a mathematical point of view, applying SVD to a matrix derives a mapping be-
tween the m-dimensional space spawned by the weighted term-frequency vectors and the r-
dimensional singular vector space. From a NLP perspective, what the SVD does is to derive the
latent semantic structure of the document represented by matrix A: a breakdown of the origi-
nal document into r linearly-independent base vectors (which in LSA are called ‘topics’). Each
term and sentence in the document is jointly indexed by these ‘topics’.

An important feature of SVD is that it can capture interrelationships among terms, so that
terms and sentences can be clustered on a ‘semantic’ basis rather than on the basis of words only.
Furthermore, as demonstrated in [1], if a word combination pattern is salient and recurring in
document, this pattern will be captured and represented by one of the singular vectors. The
magnitude of the corresponding singular value indicates the importance degree of this pattern
within the document. Any sentences containing this word combination pattern will be projected
along this singular vector, and the sentence that best represents this pattern will have the largest
index value with this vector. Assuming that each particular word combination pattern describes
a certain topic in the document, each singular vector can be viewed as representing such a topic
[4] and the magnitude of its singular value representing the degree of importance of this topic.

The summarization method proposed in [5] uses the representation of a document thus
obtained to choose the sentences to go in the summary on the basis of the relative importance
of the ‘topics’ they mention, described by the matrix V T . The summarization algorithm simply
chooses for each ‘topic’ the most important sentence for that topic: i.e., the kth sentence chosen
is the one with the largest index value in the kth right singular vector in matrix V T .

2.1 Sentence Selection by Vector Length

The main problem with the summarization method proposed by Gong and Liu is that it requires
to identify as many important ’topics’ (right singular vectors) as the number of sentences we
want to include in the summary. The result of this requirement is that sometimes a document
summary will include sentences about ’topics’ which are not particularly important. In addition,
the number of dimensions has to be fixed in advance.

In our own approach, we modified Gong and Liu’s method in order to remedy these prob-
lems. The improvement, introduced in our earlier work [12], was to change the selection crite-
rion to include in the summary the sentences whose vectorial representation in the matrix Σ · V
has the greatest ‘length’, instead of the sentences containing the highest index value for each
‘topic’. Intuitively, the idea is to choose the sentences with greatest combined weight across all
topics, possibly including more than one sentence about an important topic, rather than simply
choose a single sentence for each topic.

More precisely: after computing the SVD of a term by sentences matrix, we compute the
length sk of each sentence vector in matrix Σ · V .

sk =

√√√√
r∑

i=1

v2
k,i · σ2

i , (5)

where sk is the length of the vector of k’th sentence in the modified latent vector space, and its
significance score for summarization too. The level of dimensionality reduction (r) is essentially
learned from the data. We then include in the summary the sentences with the highest values
in vector s. We showed in previous work [12] that this modification results in a significant
improvement over Gong and Liu’s method.



3 Identification of Compression Candidates

If we want to compress a sentence we firstly need to identify a set of possible compression
candidates (CC). They should preserve the grammaticality and the meaning of the full sentence.
For this task we need a parser that can derive a sentence tree structure. We use Charniak parser
[2] that is able to mark clauses and catch their dependencies. We describe the identification
algorithm on the following sentence2:

As the western german population is now aware, German reunification needs a strong, growing west Ger-
man economy to finance the subsidisation of eastern Germans’ living standards until there is a sustained
upswing in the east even if at the cost of higher German inflation than the Bundesbank would wish.

The Charniak parser will capture the following tree structure:

Fig. 1: Tree structure of an example sentence.

We can find three edges there. If we cut the tree in an edge we get a compressed sentence where
all subordinate clauses of the edge are removed. And more, we can cut the tree more than once
- in combination of edges. However, we can not delete dependent edges. If we apply these rules
on the example sentence above we obtain the following six compression candidates:

CC1: German reunification needs a strong, growing west German economy to finance the subsidisation
of eastern Germans’ living standards. (edge 1 and edge 2 were removed)

CC2: German reunification needs a strong, growing west German economy to finance the subsidisation
of eastern Germans’ living standards until there is a sustained upswing in the east. (edge 1 and edge 3)

CC3: German reunification needs a strong, growing west German economy to finance the subsidisation
of eastern Germans’ living standards until there is a sustained upswing in the east even if at the cost of
higher German inflation than the Bundesbank would wish. (edge 1)

CC4: As the western german population is now aware, German reunification needs a strong, growing
west German economy to finance the subsidisation of eastern Germans’ living standards. (edge 2)

CC5: As the western german population is now aware, German reunification needs a strong, growing
west German economy to finance the subsidisation of eastern Germans’ living standards until there is a
sustained upswing in the east. (edge 3)

The last candidate CC6 is the full sentence. Other combinations of edges could not be applied
due to the rules above.
2 It is a sentence from DUC 2002 corpus, cluster 69, document FT923-6509.



4 Finding the Best Candidate

The summarization algorithm described in 2.1 favours long sentences. It is obvious because a
long sentence is more likely to contain significant terms or topics. There is a correlation between
sentence length and its summarization value, however, not that strong - 0.6. Regardless, the
medium correlation encourages us to normalize the summarization value by the sentence length
to avoid the negative correlation effect. We created all compression candidates of the sentences
in our corpur. This gave us enough data to show the linear dependency of the summarization
score on the sentence length (fig. 2). Notice that when we cut a sentence to 50% a random
compression candidate contains approximately 50% of full sentence information, measured by
LSA score.

Fig. 2: Dependency of the candidate’s summarization score on its length. Both the length and
the summarization score are measured proportionally to the full sentence.

Now we can update the summarization score formula (5):

sk =

√∑r
i=1 v2

k,i · σ2
i

nwords
, (6)

where nwords is a number of words in the sentence k. This will measure an average summa-
rization score for a word in a sentence. The difficulty is now that a long significant sentence
with many unimportant clauses will be assessed by a low score. However, with compression
algorithm that would be able to delete the unimportant clauses we can suppress this negative
effect. After getting the compression candidates we assign each a summarization score. Firstly
we need to create an input vector for the candidate. The process is the same as when procuding
the input matrix A (see section 2). The vector has to be transformed to the latent space3:

vq = ΣUT q, (7)

where q is the CC’s weighted term-frequency vector and vq is the vector transformed to the
latent space.
3 The process is the same as a query is transformed to the latent space in information retrieval.



Now, we can compute a summarization score for each candidate. We substitute the vector
vk by vq in equation 6. The candidate with the highest summarization score within the sentence
candidates is considered to be the best candidate of the sentence. In the example above CC1
received the highest score. Among the best candidates we select the ones with the highest sum-
marization score for the summary. A full sentence can be selected as well because it is allways
among the candidates.

After selecting the best candidate we can find out what percentage of loss in summarization
score we get when we compress a sentence. For this task we obtained the best compression
candidates of all sentences in our corpus. The next figure shows a dependency of the best can-
didate’s summarization score on the sentence length.

Fig. 3: Dependency of the best candidate’s summarization score on its length. Both the length
and the summarization score are measured proportionally to the full sentence.

The difference between this graph and the previous one is that here we take into account only
the best candidate, however, in the previous we took all. We can observe that this dependency
is defined by the square root. It means that when we shorten a sentence to 50% it will contain
on average approximately 71% of full sentence information, measured by the LSA score.

5 Experimental Results

Requirements of sentence compression algorithms are to preserve the main content of the sen-
tence and produce a grammatically correct sentence. We made the following experiment. We
used the DUC 2002 corpus [9] for the evaluation. The corpus contains newspaper articles from
different sources. We randomly selected 20 documents, each from a different cluster. The doc-
uments were parsed by the Charniak parser and summaries with compressed sentences were
created. We needed to compare our compressions to those made by humans. For each summary
sentence one compression by an annotator was written. And more we generated a baseline can-
didate where bottom-most leaves of the clause tree (see fig. 1) are cut. When we return to the
example above CC5 would be selected. Thus, for each summary sentence three compression
candidates were produced - by a human, the LSA score and the baseline.



Three annotators assigned a correctness score from 1 to 5 to each candidate. It received
the score 1 when unimportant information was removed, the score 2 when not so important
information was missing, the score 3 when some important information was missing, the score
4 when the sense of the sentence was changed and the score 5 where the sentence had no sense.
If they found a grammatical problem they marked the candidate as grammatically incorrect. The
following table compares the compression approaches. Totally, 74 sentences from 20 documents
were analyzed.

Compression % of compressed % of average correctness score % of grammatically
approach sentences compression rate (95% conf. interval) incorrect sentences

Baseline 66.07 58.41 2.883 (2.577 - 3.189) 5.86
LSA score 51.79 63.64 2.193 (1.929 - 2.456) 7.66

Human 43.75 64.60 1.486 (1.363 - 1.610) 0

Tab. 1: A comparison of the compression approaches.

A critical problem in doing the compressions was that sometimes the main object of the sen-
tence was removed. These compressions were assigned by the score 5. We can observe that the
compression algorithm based on the LSA score performed significantly better than the simple
baseline and significantly worse than humans. It compressed 51.79% of the total number of sen-
tences (the rest of the sentences was left in their full form). When a sentence was compressed it
was shortened on average to 63.64% of its original length (measured by the number of words).
The correctness was a bit lower than 2. It can imply that on average some information was re-
moved but it was not so important. Notice that even some human compressions were marked
2 - so the annotators advised to remove some information that is not so important for the full
sentence sense. A few gramatical problems arose, however, 7% does not represent a serious
problem. There were high correlations between annotator assessments - 76%, 81% and 85%.

In the following table we present a standard summarization evaluation by ROUGE [8]. It
is a n-gram method that measures the similarity between automatically produced summaries
and abstracts written by humans. For this evaluation we used the whole DUC 2002 corpus
- totally 567 documents. We compared 3 settings of the system. The first does not sentence
compression and uses the formula (5) to assign a score to a sentence. This system was presented
in our previous paper [13]. The only difference of the second system setting is that it takes into
account the sentence length adjustment - formula (6) but still it extracts full sentences. And
finally, the last system use formula (6) and sentence compression.

Summarizer setting ROUGE-1 ROUGE-2 ROUGE-SU4 ROUGE-L

Formula (5) without compression 0.43209 0.20735 0.16792 0.40079
Formula (6) without compression 0.42663 0.20361 0.16474 0.39832

Formula (6) with compression 0.43774 0.20955 0.16877 0.40879

Tab. 2: The ROUGE score evaluation. ROUGE-1 = a unigram similarity measure, ROUGE-2 = a bigram
measure, ROUGE-SU4 = a bigram measure with skip unigrams, and ROUGE-L = a longest common
subsequence measure. For detail see [8].



Here we can observe that when we included sentence length to the formula for assigning the
sentence quality ROUGE scores came down. It is caused by decreasing the score of significant
sentences with many unimportant subordinate clauses. However, when we include sentence
compression that is able to identify these clauses the summary quality goes up. Long significant
sentences are included but shortened and we can add more sentences to the summary because it
is usually limited by the number of words. In our experiment the summary was limited by 100
words. However, there is a chance to include a sentence with different sense from its full form.

6 Conclusions

We presented a simple sentence compression approach for our summarizer that is based on
the latent semantic analysis. Evaluation showed that it is able to produce solid compressions
although it is still far from perfect. However, sentence compression is a very difficult task.
There is a possibility to produce a sentence with different sense from its full form or to make
it grammatically incorrect. Our future work in automatic sentence compression will focus on
fixing the missing object problem. The task will be to add more resources because the LSA
score is not sometimes enough. More, we plan to go deeper into the sentence structure to be
able to identify not only unimportant clauses but also phrases or terms.

We thank our colleagues for their great annotation work.

Bibliography

1. M. W. Berry, S. T. Dumais, and G. W. O’Brien: Using linear algebra for intelligent IR, SIAM Re-
view, 37(4), 1995.

2. E. Charniak: A maximum-entropy-inspired parser. Proceedings of NAACL, Philadelphia, US, 2000.
3. F. Y. Y. Choi, P. Wiemer-Hastings, and J. D. Moore: Latent semantic analysis for text segmentation.

Proceedings of EMNLP, Pittsburgh, US, 2001.
4. C. H. Q. Ding: A probabilistic model for latent semantic indexing. Journal of the American Society

for Information Science and Technology, 56(6), 597–608, 2005.
5. Y. Gong and X. Liu: Generic text summarization using relevance measure and latent semantic analy-

sis. Proceedings of ACM SIGIR, New Orleans, US, 2002.
6. K. Knight and D. Marcu: Summarization beyond sentence extraction: A probabilistic approach to

sentence compression. Artificial Intelligence, 139(1):91–107, 2003.
7. T. K. Landauer and S. T. Dumais: A solution to plato’s problem: The latent semantic analysis theory

of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211–240,
1997.

8. C. Lin and E. Hovy: Automatic evaluation of summaries using n-gram co-occurrence statistics. Pro-
ceedings of HLT-NAACL, Edmonton, Canada, 2003.

9. NIST: DUC 2002 corpus. http://www-nlpir.nist.gov/projects/duc/data.html.
10. S. Riezler, T. H. King, R. Crouch and A. Zaenen: Statistical sentence condensation using ambigu-

ity packing and stochastic disambiguation methods for lexical-functional grammar. Proceedings of
HLT/NAACL, Edmonton, Canada, 2003.

11. C. Sporleder and M. Lapata: Discourse chunking and its application to sentence compression. Pro-
ceedings of EMNLP, Vancouver, Canada, 2005.

12. J. Steinberger and K. Jezek: Text summarization and singular value decomposition. Proceedings of
ADVIS, Izmir, Turkey, 2004.

13. J. Steinberger, M. A. Kabadjov, M. Poesio and O. Sanchez-Graillet: Improving LSA-based summa-
rization with anaphora resolution. Proceedings of EMNLP, Vancouver, Canada, 2005.


