
Lexical Structure for Dialogue Act Recognition
Pavel Král1,2, Christophe Cerisara1, Jana Klečková2
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Abstract— This paper deals with automatic dialogue acts
(DAs) recognition in Czech. Dialogue acts are sentence-level
labels that represent different states of a dialogue, such as
questions, hesitations, ... In our application, a multimodal
reservation system, four dialogue acts are considered: state-
ments, orders, yes/no questions and other questions. The
main contribution of this work is to propose and compare
several approaches that recognize dialogue acts based on
three types of information: lexical information, prosody and
word positions. These approaches are tested on a Czech
Railways corpus that contains human-human dialogues,
which are transcribed both manually and with an automatic
speech recognizer for comparison. The experimental results
confirm that every type of feature (lexical, prosodic and word
positions) bring relevant and somewhat complementary
information. The proposed methods that take into account
word positions are especially interesting, as they bring global
information about the structure of the sentence, at the
opposite of traditional n-gram models that only capture local
cues. When word sequences are estimated from a speech
recognizer, the resulting decrease of accuracy of all proposed
approaches is very small (about 3 %), which confirms the
capability of the proposed approaches to perform well in
real applications.

Index Terms— dialogue act, language model, prosody, sen-
tence structure, speech recognition

I. I NTRODUCTION

This work deals with automatic dialogue act recogni-
tion from the speech signal. Adialogue act (DA) repre-
sents the meaning of an utterance at the level of illocution-
ary force [1]. For example, “question” and “answer” are
both possible dialogue acts. Automatically recognizing
such dialogue acts is of crucial importance to interpret
users’ talk and guarantee natural human-computer inter-
actions. For instance, this information might be used to
check whether the user is requesting some information
and is waiting for it, or to evaluate the feedback of the
user. Another application is to animate a talking head
that reproduces the speech of a speaker in real-time, by
giving it facial expressions that are relevant to the current
state of the discourse. In the following, a Czech train
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ticket reservation application has been used to assess the
proposed methods.

As summarized in section II, two main types of features
are generally used in the literature to automatically recog-
nize dialogue acts: word sequences and prosody. A prob-
abilistic dialogue grammar is also often used as additional
stochastic information. Word sequences are most of the
time modeled by statistical n-gram models, which encode
the relationship between words and dialogue acts locally.
In this work, we investigate a new kind of information
for dialogue act recognition, that is the words position in
the utterance. In contrast to n-grams, this information is
global at the sentence level. Intuitively, this information
is quite important for this task, as for instance, the word
“who” is often at the beginning of sentences for ques-
tions, and at other positions for declarative sentences. A
standard approach that takes into account this information
consists in analyzing the sentence into a syntactic tree,
but such analyzers are also known to work poorly in
spontaneous speech. Hence, our approach is rather based
on statistical methods.

We have already studied this problem in [2], [3], and
proposed two approaches to solve it. In this work, we
shortly present again both methods in section III, and
further propose a third one that decouples the position
from the lexical models, with the objective of optimizing
the available training corpus. This paper also analyzes
the gain obtained by merging lexical information with
prosody, and discusses the combination of the proposed
dialogue act recognition approach with a state-of-the-
art speech recognizer, in order to deploy this system in
realistic speech-driven applications. Section IV evaluates
and compares these methods. In the last section, we
discuss the research results and propose some future
research directions.

II. RELATED WORK

To the best of our knowledge, there is very little
existing work on automatic modeling and recognition of
dialogue acts in the Czech language. Alternatively, a num-
ber of studies have been published for other languages,
and particularly for English and German.

Different sets of dialogue acts are defined in these
works, depending on the target application and the avail-



able corpora. In [4], 42 dialogue acts classes are de-
fined for English, based on the Discourse Annotation
and Markup System of Labeling (DAMSL) tag-set [5].
Switchboard-DAMSL tag-set [6] (SWBD-DAMSL) is
an adaptation of DAMSL in the domain of telephone
conversation. The Meeting Recorder DA (MRDA) tag-
set [7] is another very popular tag-set, which is based
on the SWBD-DAMSL taxonomy. MRDA contains 11
general DA labels and 39 specific labels. Jekat [8] defines
for German and Japanese 42 DAs, with 18 DAs at the
illocutionary level, in the context of the VERBMOBIL
corpus.

These general sets are usually further reduced into a
much smaller number of broad classes, either because
some classes occur rarely, or because the target applica-
tion does not require such detailed classes. For instance,
a typical regrouping may be the following [9]:

• statements

• questions

• backchannels

• incomplete utterance

• agreements

• appreciations

• other

Automatic recognition of dialogue acts is usually
achieved using one of, or a combination of the three
following models:

1) DA-models of the words sequences

2) dialogue grammars that model sequences of DAs

3) DA-models based on the utterance prosody

The first class of models infers the DA from the words
sequences. These models are usually either probabilistic
models, such as n-gram language models [4], [10], or
knowledge-based approaches, such as semantic classifi-
cation trees [10].

The methods based on probabilistic language models
exploit the fact that different DAs use distinctive words.
Some cue words and phrases can serve as explicit indi-
cators of dialogue structure. For example, 88.4 % of the
trigrams ”<start> do you” occur in English inyes/no
questions [11].

Semantic classification trees are decision trees that
operate on words sequences with rule-based decision.
These rules can be either trained automatically on a
corpus, or manually coded.

A dialogue grammar is used to predict the most
probable next dialogue act based on the previous
ones. It can be modeled by Hidden Markov Models
(HMMs) [4], Bayesian Networks [12], Discriminative
Dynamic Bayesian Networks (DBNs) [13], or n-gram
language models [14].

Prosodic models [9] can be used to provide additional
clues to classify sentences in terms of DAs. For instance,

some dialogue acts can be generally characterized by
prosody as follows [15]:

• a falling intonation for most statements

• a rising F0 contour for some questions (particularly
for declaratives and yes/no questions)

• a continuation-rising F0 contour characterizes a
(prosodic) clause boundaries, which is different from
the end of utterance

In [9], the duration, pause, fundamental frequency (F0),
energy and speaking rate prosodic attributes are modeled
by a CART-style decision trees classifier. In [16], prosody
is used to segment utterance. The duration, pause, F0-
contour and energy features are used in [17], [18]. In
both [17] and [18], several features are computed based
on these basic prosodic attributes, for example the max,
min, mean and standard deviation of F0, the mean and
standard deviation of the energy, the number of frames in
utterance and the number of voiced frames. The features
are computed on the whole sentence and also on the
last 200 ms of each sentence. The authors conclude that
the end of sentences carry the most important prosodic
information for DAs recognition. Furthermore, three dif-
ferent classifiers, hidden Markov models, classification
and regression trees and neural networks, are compared
and give similar DAs recognition accuracy.

Shriberg et al. show in [9] that it is better to use
prosody for DA recognition in three separate tasks,
namely question detection, incomplete utterance detection
and agreements detection, rather than for detecting all
DAs in one task.

Lexical and prosodic classifiers are combined in [4] as
follows:

P (W, F |C) = P (W |C).P (F |W, C) (1)

≃ P (W |C).P (F |C)

whereC represents a dialogue act andW andF , which
respectively represent lexical and prosodic information,
are assumed independent.

III. L EXICAL POSITION FOR DIALOGUE ACT

RECOGNITION

Syntax information is often modeled by probabilistic
n-gram models. However, these n-grams usually model
local sentence structure only. Syntax parsing could be
used to associate sentence structures to particular dialogue
acts, but conceiving general grammars is still an open
issue, especially for spontaneous speech.

In our system we propose to include information related
to the position of the words within the sentence. This
method presents the advantage of introducing valuable in-
formation related to theglobal sentence structure, without
increasing the complexity of the overall system.



A. Sentence structure model

The general problem of automatic DAs recognition is
to compute the probability that a sentence belongs to a
given dialogue act class, given the lexical and syntactic
information, i.e. the words sequence.

We simplify this problem by assuming that each word
is independent of the other words, but is dependent on its
position in the sentence, which is modeled by a random
variablep.

We can model our approach by a very simple Bayesian
network with three variables, as shown in Figure 1. In
this figure,C encodes the dialogue act class of the test
sentence,w represents a word andp its position in the
sentence.

w

C

(a)

p

w

C

(b)

Figure 1. Graphical model of our approaches: grayed nodes are hidden

In the left model of Figure 1,P (w|C, p) is assumed
independent of the position:P (w|C, p) ≃ P (w|C). This
system only considers lexical information, and the prob-
ability over the whole sentence is given by equation 2.

P (w1, · · · , wT |C) =

T∏

i=1

P (wi|C) (2)

Dialogue act recognition then consists in finding the
dialogue actĈ that maximizes the a posteriori probability:

Ĉ = argmax
C

P (C|w1, · · · , wT )

= argmax
C

P (C)

T∏

i=1

P (wi|C) (3)

This system is referred to as the “unigram” or “Naive
Bayes” classifier [19].

On the right part of Figure 1, information about the
position of each word is included. Then, the following
issues have to be solved:

• Sentences have different length.

• The new variablep greatly reduces the ratio between
the size of the corpus and the number of free
parameters to train.

The first issue is solved by defining a fixed number
of positions Np: Np likelihoods P (wi|C, p) are thus
computed for each sentence. Let us callT the actual
number of words in the sentence. TheT words are aligned
linearly with theNp positions. Two cases may occur:

• WhenT ≤ Np, the same word is repeated at several
positions.

• When T > Np, several words can be aligned with
one position. The likelihood at this position is the
average over theNi aligned words(wi)Ni

:

P (w|C, p) =
1

Ni

Ni∑

i

P (wi|C, p) (4)

We propose and compare three methods to solve
the second issue. The firstmultiscale position method
considers the relative positions in a multiscale tree to
smooth the models likelihoods. The secondnon-linear
merging method models the dependency betweenW and
p by a non-linear function that includesp. The thirdbest
position method decouples the positions from the lexical
identities to maximize the available training corpus.

1) Multiscale position: In this approach,p can take a
different number of values depending on the scale. All
these scales can be represented on a tree, as shown in
Figure 2. At the root of the tree (coarse scale),p can take
only one value: the model is equivalent to unigrams. Then,
recursively, sentences are split into two parts of equal size
and the number of possible positions is doubled.
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1
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Figure 2. Multiscale position tree

For each wordwi, a threshold is applied on its number
of occurrences andP (wi|C, p) for this word is computed
at the finest scale that contains that minimum number of
occurrences. This corresponds to the standard back-off
technique [20] to solve the problem of lack of data.

Classification is then realized based on the following
equation:

Ĉ = arg max
C

P (C|w1, · · · , wT , p1, · · · , pT )

= arg max
C

P (C)

T∏

i=1

P (wi|C, pi) (5)

where each likelihood is estimated at the finest scale
possible.

2) Non-linear merging: In this approach, unigram
probabilities are computed for each word and passed to a
muti-layer perceptron (MLP), where the position of each
word is encoded by its input index: theith word in the
sentence is filled into theith input of the MLP. The output
of the MLP corresponds to thea posteriori probabilities
P (C|w1, · · · , wT , p1, · · · , pT ) and the best class is simply
given by:

Ĉ = arg max
C

P (C|w1, · · · , wT , p1, · · · , pT ) (6)



B. Best position approach

We now give a slightly different definition forp: for
any utteranceW , let p be the best position amongst every
possible position, i.e. the position that minimizes the DA
recognition error rate.

Our objective is still to maximize:

P (C|W ) =
P (W |C)P (C)

P (W )
(7)

=
P (C)

∑
p P (W, p|C)

P (W )
(8)

=
P (C)

∑
p P (W |C, p)P (p|C)

P (W )
(9)

Now, once the best positionp has been defined for a given
utterance, the decision about the winning DA class can be
taken based solely on this best position:

P (W |C, p) = P (wp|C)

wherewp is the word of the current sentence at the best
positionp. Hence,

P (C|W ) =
P (C)

∑
p P (wp|C)P (p|C)

P (W )
(10)

Finally, maximization gives:

Ĉ = arg max
C

P (C)
∑

p

P (wp|C)P (p|C) (11)

In this equation, the lexical likelihood
∏

i P (wi|C)
used so far is replaced by the weighted sum of each
word likelihood. The weights intuitively represent the
importance of each position, for a given DA class.

Compared to the previously proposed solutions that
take into account the global position of the words, this
alternative presents the advantage of decoupling the po-
sition model from the lexical model. The lexical models
P (wi|C) are thus still trained on the whole corpus, which
is not divided into position-relative clusters as in the
multiscale tree.

Two factors might be considered to compute these
weights: they can of course be trained on a labeled corpus,
but we can also use some expert knowledge to define
them. For instance, it is well-known that the words at
the beginning of a sentence are important to recognize
questions. This expert knowledge can be easily introduced
as ana priori probability.

A posteriori weights can also be obtained after training
on a development corpus. In the following experiments,
the weights are trained based on the minimum DA error
rate criterion, using a gradient-descent algorithm. The ini-
tial values of the weights are obtained by first evaluating
on the development corpus the DA recognition accuracy
when considering only the word at positionp, for every
possiblep. The positionp that gives the best recognition
accuracy represents the most important position in the
sentence. The gradient descent procedure then starts from
this original position.

C. Prosody

Following the conclusions of previous studies [21],
only the two most important prosodic attributes are con-
sidered: F0 and energy. The F0 curve is computed from
the autocorrelation function. The F0 and energy values are
computed on every overlapping speech window. The F0
curve is completed by linear interpolation on the unvoiced
parts of the signal. Then, each sentence is decomposed
into 20 segments and the average values of F0 and energy
are computed within each segment. This number is chosen
experimentally [22]. We thus obtain 20 values of F0 and
20 values of energy per sentence. Let us callF the set of
prosodic features for one sentence.

Two models are trained on these features and compared.
The first one if a Muti-Layer Perceptron that outputs
P (C|F ). The best class is then:

Ĉ = arg max
C

P (C|F ) (12)

The second one is a Gaussian Mixture Model (GMM)
that modelsP (F |C). The best class is then:

Ĉ = argmax
C

P (C|F ) = arg max
C

P (F |C)P (C) (13)

D. Combination

The outputs of the lexical, position and prosodic models
are normalized so that respectively approximateP (C|W ),
P (C|W, P ) andP (C|F ).

These probabilities are then combined with a Multi-
Layer Perceptron (MLP), as suggested in our previous
works [23].

IV. EVALUATION

A. LASER speech recognizer

The LASER (LICS Automatic Speech
Extraction/Recognition) software is currently under
development by the Laboratory of Intelligent
Communication Systems (LICS) at the University
of West Bohemia. The goal is to develop a set of
tools that would allow training of acoustic models and
recognition with task dependent grammars or more
general language models.

The architecture is based on a so calledhybrid
framework that combines the advantages of the hidden
Markov model approach with those of artificial neural
networks. A typical hybrid system uses HMMs with state
emission probabilities computed from the output neuron
activations of a neural network (such as the multi layer
perceptron).

1) Neural network acoustic model: According to many
authors (see e.g. [24]) the use of a neural network
for the task of acoustic modeling has several potential
advantages over the conventional Gaussian mixtures seen
in today’s state-of-the-art recognition systems. Among the
most notable ones are its economy – a neural network
has been observed to require less trainable parameters
to achieve the same recognition accuracy as a Gaussian



mixture model, and context sensitivity – the ability to
include features from several subsequent speech frames
and thus incorporate contextual information.

A three layer perceptron serves as an acoustic model
in the latest version of the recognizer. It has 117 input
neurons (there are 13 MFCC coefficients per speech frame
and 9 subsequent frames are used as features), 400 hidden
neurons and 36 output neurons corresponding to our
choice of 36 context independent phonetic units (which
roughly correspond to Czech phonemes). Experiments
with larger hidden layer sizes have been carried out
but the 400 hidden neurons were chosen as a good
trade-off between modeling accuracy and computational
requirements.

The incremental version of the back-propagation algo-
rithm has been found as the fastest converging training
strategy for this task. Also in order to further speed up
the convergence, the cross entropy error criterion is used
instead of the usual summed square error. Training this
multi layer perceptron requires the precise knowledge of
phoneme boundaries. These can be obtained via forced
Viterbi alignment from the transcriptions of the training
utterances. An already trained recognizer is necessary for
this process. It is also beneficial to generate a new set of
phonetic labels using the newly trained hybrid recognizer
and repeat the training process once more.

Similarly to other automatic speech recognition sys-
tems, three-states HMMs phonetic units are modeled.
However, all three states share the same emission proba-
bility computed from the activation value of one neuron
in the output layer of the MLP. This can be viewed as a
minimum phoneme duration constraint which, according
to our experiments, significantly increases recognition ac-
curacy. Because each state is tied to a neuron representing
one phonetic class, the outputs of a well trained MLP can
be interpreted as state posterior probabilitiesP (Sj |o)

1,
which can be changed to state emission probabilities:

P (o|Sj) =
P (Sj |o) · P (o)

P (Sj)
. (14)

where Sj denotes thejth HMM state. The termP (o)
remains constant during the whole recognition process
and hence can be ignored. The emission likelihoods are
then computed by dividing the network outputs by the
class priors (relative frequencies of each class observed
in training data).

The HMM state transition probabilities are not
trained since their contribution to recognition accuracy is
negligible in speech recognition applications, accordingto
our experiments. Uniform distribution is assumed instead.

2) Language model: Training words n-gram language
models is not a good option in our case, because of the
small size of our corpus, which is composed of manual
transcriptions of a railway application (see Section IV-B).
The chosen solution has been to merge words into classes
and train an n-gram model based on those classes. This

1
o represents the observation, i.e. in our case the feature vector

should compensate the lack of training data for infrequent
word n-grams.

The method tries to automatically cluster words into
classes according to their functional position in sentence.
The algorithm (see [25]) begins with assigning each word
into separate class and then starts merging two classes at
a time. The process is stopped when the desired number
of classes is reached. In the following experiments, the
number of classes has been empirically set to 100 classes,
and a trigram language model has been trained on these
classes.

B. Dialogue acts corpus

The Czech Railways corpus contains human-human
dialogues recorded in Czech, in the context of a train
ticket reservation application. The number of sentences
of this corpus is shown in column 2 of Table I.

The LASER recognizer is trained on 6234 sentences
(c.f. first part of Table I), while 2173 sentences pro-
nounced by different speakers (c.f. second part of Table I)
are used for testing. Sentences of the test corpus have
been manually labeled with the following dialogue acts:
statements (S), orders (O), yes/no questions (Q[y/n]) and
other questions (Q). The word transcription given by the
LASER recognizer is used to compare the performances
of DAs recognition experiments with the scores obtained
from manual word transcription.

All experiments for DAs recognition are realized using
a cross-validation procedure, where 10 % of the corpus is
reserved for the test, and another 10 % for the develop-
ment set. The resulting global accuracy has a confidence
interval of about± 1 %.

DA No. Example English translation

1. Training part
Sent. 6234

2. Testing part (labeled by DAs)
S 566 Chtěl bych jet do

Pı́sku.
I would like to go to
Pı́sek.

O 125 Najdi dalšı́ vlak do
Plzně!

Look at for the next
train to Plzeň!

Q[y/n] 282 Řekl byste nám
dalšı́ spojenı́?

Do you say next con-
nection?

Q 1200 Jak se dostanu do
Šumperka?

How can I go to
Šumperk?

Sent. 2173

TABLE I.
COMPOSITION OF THECZECH RAILWAYS CORPUS

C. Sentence structure experiments

1) Multiscale position: The multiscale position ap-
proach trains a model ofP (wi|C, p) at different scales, as
shown in Figure 2. Recognition is then performed based
on equation 5.

Figure 3 shows the recognition accuracy of this method
in function of the minimum number of word occurrence
at each scale: this number defines the threshold used in
the multiscale tree to select the finest possible scale to



estimate the observation likelihood. The depth of the tree
used in this experiment is 3, which defines 8 segments.
The unigram model recognition accuracy is also reported
on this figure for comparison.
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Figure 3. Dialogue acts recognition accuracy of the multiscale position
system. The X-axis represents the minimum number of words inthe
tree, and the Y-axis plots the DA recognition accuracy

The recognition accuracy of each class is shown in
Table II.

These experimental results confirm that taking into
account the global position of each word improves
the recognition accuracy. Furthermore, the proposed
multiscale tree seems to be a reasonable solution to the
issue concerning the lack of training data.

2) Non-linear merging: In the second experiment, the
Non-linear model that merges lexical and position in-
formation is implemented by a Multi-Layer Perceptron
(MLP). The chosen MLP topology is composed of three
layers: 4 (for each DA class) times 8 (equal-size segments
of the sentence) input neurons, 12 neurons in the hidden
layer and 4 output neurons, which encode thea posteriori
class probability. The dialogue act class is given by
equation 6.

The recognition results of these methods are shown in
Table II, along with the results obtained with the baseline
unigram model.

3) Best position approach: The third position-based
approach proposed is thebest-position method, which
recognizes dialogue acts based on equation 11. In this
method, the number of positions allowed is not limited
by the size of the training corpus. Hence, twenty po-
sitions (instead of eight positions for the two previous
approaches) are considered.

In order to compute the initial values of the weights
P (p|C), recognition is first performed on the development
corpus using only one position at a time:

P (p = i|C) = 1 andP (p 6= i|C) = 0 for all C

where i is one of the twenty possible positions. This
experiment is repeated for every possiblei, and the

recognition accuracies obtained with eachi are shown
in Figure 4.
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Figure 4. DA recognition accuracy on the development corpuswhen
only a single position is considered.

Based on this experiment, the initial values chosen for
the gradient descent algorithm are:

P (p = 1|C) = 1 andP (p > 1|C) = 0 for all C

After the gradient descent algorithm, the resulting
weights are shown in Figure 5.
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Figure 5. Weights obtained after the gradient-descent algorithm.

In this figure, it is clear that the most important
positions for all DA classes are close to the beginning of
the utterance. The last words of the utterance also have
some importance, especially for the “order” class. The
very first position is the most important for questions.
These results are conforming to our intuition.

Then, using the weights shown in Figure 5, recognition
is performed on the test corpus. The results are given in
the fifth section of Table II.

When considering lexical information only, the best
performance is obtained with thebest position approach.

D. Prosody

The third section of Table II shows the recognition
accuracy obtained when only a prosodic model is used



to classify dialogue acts. Two prosodic models are com-
pared: the GMM (equation 13) and the MLP (equa-
tion 12).

The best MLP topology uses three layers: 40 inputs, 18
neurons in hidden layer and 4 outputs. The best results
are obtained with the 3-mixtures GMM. It is difficult to
use more Gaussians, because of the lack of training data,
mainly for class O.

Although these recognition scores are much lower than
the ones obtained with lexical features, it is shown next
that prosody may nevertheless bring some relevant clues
that are not captured by lexical models.

E. Combination

The fourth part of Table II shows the recognition
accuracy when the prosodic GMM and the MLP-position
models are combined with another MLP (as described in
[23]).

One can conclude without loss of generality that the
combination of models gives better recognition accuracy
than both the lexical and prosodic models taken individu-
ally, which confirms that different sources of information
bring different important clues to classify DAs.

accuracy in [%]
Approach/
Classifier

S O Q[y/n] Q Global

1. Lexical information
1 Unigram 93.5 77.6 96.5 89.9 91.0

2. Sentence structure
2.1 Multiscale 94.7 70.4 96.1 95.3 93.8
2.2 Non-linear 90.3 83.2 91.1 98.8 94.7

3. Prosodic information
3.1 GMM 47.7 43.2 40.8 44.3 44.7
3.2 MLP 38.7 49.6 52.6 34.0 43.5

4. Combination of 2.2 and 3.1
MLP 91.5 85.6 94.0 98.7 95.7

5. Best position approach
Best position 93.6 95.2 97.2 94.3 95.8

TABLE II.
DIALOGUE ACTS RECOGNITION ACCURACY FOR DIFFERENT

APPROACHES/CLASSIFIERS AND THEIR COMBINATION WITH

MANUAL WORD TRANSCRIPTION

F. Recognition with LASER recognizer

Table III shows DAs recognition scores, when word
transcription is estimated by the LASER recognizer.
The results are obtained with word class based trigram
language model (see Section 4.2). Sentence recognition
accuracy is 39.78 % and word recognition accuracy is
83.36 %.

Table III structure is the same as Table II.
The errors in transcriptions induced by the automatic

speech recognizer do not have a strong impact on the
results presented so far: the final accuracy only decreases
from 95.7 % down to 93 %, and the ordering of the
methods’ accuracy is preserved. This validates the use
of the proposed approaches in human-computer speech-
based applications that use such a speech recognizer.

accuracy in [%]
Approach/
Classifier

S O Q[y/n] Q Global

1. Lexical information
1 Unigram 93.1 68.8 94.7 86.3 88.2

2. Sentence structure
2.1 Multiscale 93.8 63.2 92.9 92.9 91.4
2.2 Non-linear 85.5 72.0 86.8 98.0 91.8

3. Prosodic information
3.1 GMM 47.7 43.2 40.8 44.3 44.7
3.2 MLP 38.7 49.6 52.6 34.0 43.5

4. Combination of 2.2 and 3.1
MLP 88.5 77.6 90.4 97.3 93.0

5. Best position approach
Best position 92.1 86.4 95.3 92.2 93.6

TABLE III.
DIALOGUE ACTS RECOGNITION ACCURACY FOR DIFFERENT

APPROACHES/CLASSIFIERS AND THEIR COMBINATION WITH WORD

TRANSCRIPTION FROMLASER RECOGNIZER

V. CONCLUSIONS

In this work, we studied the influence of word posi-
tions in a dialogue act recognition task. Two previously
proposed approaches and a third new one have been
described and compared, both in terms of their respective
theoretical advantages and drawbacks, and also experi-
mentally on a Czech corpus for a train ticket reservation.
It has thus been demonstrated that the global position of
the words in sentences is an important information that
improves automatic dialogue act recognition accuracy, at
least when the size of the training corpus is too limited
to train lexical n-gram models with a large n, which is
the most common situation in dialogue act recognition.

One of the systems that combines both lexical and
position information has then been enhanced by further
considering prosodic information. Yet, several prosodic
models have been compared, and the combined approach
still improves the results over the position and lexicon
approach alone.

Finally, the manual transcription has been replaced by
an automatic transcription obtained from a Czech speech
recognizer, in order to validate the use of the proposed
dialogue act recognition approach in realistic applications
that are often based on automatic speech recognition. The
resulting decrease in performances is very small, which
confirms the validity of the proposed approaches.

The focus of this work has been on modeling global
words position, but local statistical grammars have not
been largely exploited, mainly because of the lack of
training data. However, these grammars shall also bring
relevant information, and it would be quite advantageous
to further combine the proposed global model with such
local grammars. Another important information that has
not been taken into account in this work is a dialogue act
grammar, which models the most probable sequences of
dialogue acts. It is straightforward to use such a statistical
grammar with our system, but we have not yet done so
because it somehow masks the influence of the statistical



and prosodic features we focus on in this work, and also in
order to keep the approach as general as possible. Indeed,
such a grammar certainly improves the recognition results
but is also often dependent on the target application.
We also plan to test these methods on another corpus
(broadcast news), another language (French) and with
more DA classes.
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(France). He is also a lecturer at the University of West Bohemia
and a member of the Speech Group at LORIA-INRIA in Nancy.
His research domain is on speech recognition, more precisely
on automatic dialog acts recognition.

He received his M.Sc. degree in 1999 with honours in Dept.
Informatics & Computer Science at the University of West
Bohemia.

Christophe Cerisara is graduated from the engineering school
ENSIMAG in computer science in Grenoble in 1996, and
obtained the Ph.D. at the Institut National Polytechnique de
Lorraine in 1999. He worked as a researcher from 1999 to 2000
at Panasonic Speech Technology Laboratory in Santa Barbara.
He is now a research scientist at CNRS, and belongs to the
Speech Group in LORIA. His research interests include multi-
band models and robust automatic speech recognition to noise.
He is the author or co-author of more than forty scientific
publications.

Associated ProfessorJana Klečková is a member of Depart-
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